The current round of model building uses the collapsed MJ exposure variable

Full Model

This model includes

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr i.EDUC_cat i.race_eth indfmpir ridageyr,rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,611
Number of PSUs     =       214                Population size   =  298,035,877
                                              Subpop. no. obs   =       19,441
                                              Subpop. size      =  133,015,285
                                              Design df         =          109
                                              F(  36,     74)   =        45.02
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   1.081166   .0900856     0.94   0.351     .9165826    1.275302
     _IMJ2_2 |   1.351174   .1727591     2.35   0.020     1.048712     1.74087
        gndr |   2.254758   .1120625    16.36   0.000     2.043243     2.48817
_IEDUC_cat_2 |   1.155943   .1317258     1.27   0.206     .9222501    1.448853
_IEDUC_cat_3 |    .976727   .1205645    -0.19   0.849     .7647574    1.247449
_IEDUC_cat_4 |   1.038433   .1273142     0.31   0.759      .814419    1.324065
_IEDUC_cat_5 |   .7381725   .0899919    -2.49   0.014     .5797241    .9399274
_Irace_eth_2 |   1.252365   .0695511     4.05   0.000     1.121832    1.398085
_Irace_eth_3 |   .9957338   .0752287    -0.06   0.955     .8572592    1.156576
_Irace_eth_4 |   .9073141   .0639002    -1.38   0.170     .7891079    1.043227
    indfmpir |   1.018176   .0192621     0.95   0.343     .9807059    1.057078
    ridageyr |   1.028041   .0030318     9.38   0.000     1.022049    1.034067
       _cons |    .071281   .0125789   -14.97   0.000     .0502431    .1011278
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   1.002551   .0850181     0.03   0.976     .8474471    1.186042
     _IMJ2_2 |   .9995363   .1156582    -0.00   0.997     .7946918    1.257183
        gndr |   2.435001   .1257827    17.23   0.000      2.19804    2.697506
_IEDUC_cat_2 |   1.075327   .1304962     0.60   0.551     .8454413    1.367722
_IEDUC_cat_3 |   1.198871   .1313026     1.66   0.101     .9649411    1.489513
_IEDUC_cat_4 |   1.194915   .1367742     1.56   0.123     .9523829    1.499209
_IEDUC_cat_5 |   .8448599   .1001706    -1.42   0.158     .6679273    1.068662
_Irace_eth_2 |   1.356215   .0935342     4.42   0.000     1.182945    1.554864
_Irace_eth_3 |   .8784635   .0642784    -1.77   0.079     .7598727    1.015562
_Irace_eth_4 |   .9112657   .0655358    -1.29   0.199     .7902083    1.050869
    indfmpir |   1.006747   .0172752     0.39   0.696      .973084    1.041575
    ridageyr |   1.048406   .0025344    19.56   0.000     1.043395    1.053442
       _cons |   .0360908    .005909   -20.29   0.000     .0260896    .0499257
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   1.010595   .1083398     0.10   0.922     .8171472    1.249838
     _IMJ2_2 |   .9817426   .1704985    -0.11   0.916     .6958418    1.385112
        gndr |   2.799287   .1927263    14.95   0.000     2.442226    3.208553
_IEDUC_cat_2 |   1.187676    .177494     1.15   0.252     .8832035    1.597111
_IEDUC_cat_3 |   1.105081   .1608308     0.69   0.494     .8281739    1.474574
_IEDUC_cat_4 |   1.151613   .1893584     0.86   0.392     .8313294    1.595291
_IEDUC_cat_5 |     .72398   .1324902    -1.76   0.080     .5037391    1.040513
_Irace_eth_2 |   2.486514   .1937666    11.69   0.000     2.130662    2.901798
_Irace_eth_3 |   1.001051   .0924942     0.01   0.991     .8335364     1.20223
_Irace_eth_4 |    1.13396   .1153303     1.24   0.219     .9269448    1.387209
    indfmpir |   .9452285   .0212171    -2.51   0.014     .9040985    .9882296
    ridageyr |   1.088587   .0030177    30.62   0.000     1.082622    1.094585
       _cons |    .003742   .0006595   -31.71   0.000     .0026387    .0053065
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.

Store full model RRs in a matrix for future:

data.0 <- c(1.081166   ,1.351174,1.002551   ,.9995363,1.010595,.9817426)
RR0 <- matrix(data.0, nrow = 3, ncol = 2, byrow = TRUE)
RR0
         [,1]      [,2]
[1,] 1.081166 1.3511740
[2,] 1.002551 0.9995363
[3,] 1.010595 0.9817426

Deletion Cycle 1

As gender is a political variable, it will not be considered for removal.

Education

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr i.race_eth indfmpir ridageyr,rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,616
Number of PSUs     =       214                Population size   =  298,070,653
                                              Subpop. no. obs   =       19,446
                                              Subpop. size      =  133,050,061
                                              Design df         =          109
                                              F(  24,     86)   =        75.53
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   1.114028   .0923798     1.30   0.196     .9451893    1.313027
     _IMJ2_2 |   1.406301   .1799681     2.66   0.009     1.091251    1.812307
        gndr |   2.276105   .1132495    16.53   0.000     2.062361    2.512002
_Irace_eth_2 |   1.272604   .0704743     4.35   0.000     1.140319    1.420235
_Irace_eth_3 |   1.038213   .0726173     0.54   0.593     .9038184    1.192592
_Irace_eth_4 |    .892116   .0637167    -1.60   0.113     .7743624    1.027776
    indfmpir |   .9802786   .0172675    -1.13   0.261     .9466455    1.015107
    ridageyr |   1.028201    .002957     9.67   0.000     1.022357    1.034079
       _cons |   .0730937   .0088738   -21.55   0.000     .0574621    .0929776
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   1.030628    .087858     0.35   0.724     .8704119    1.220335
     _IMJ2_2 |   1.038105   .1213104     0.32   0.750     .8234843    1.308661
        gndr |   2.450987   .1241066    17.70   0.000     2.216952    2.709728
_Irace_eth_2 |   1.371535   .0952682     4.55   0.000     1.195137    1.573968
_Irace_eth_3 |   .8777422   .0619099    -1.85   0.067     .7632294    1.009436
_Irace_eth_4 |   .8865064    .062838    -1.70   0.092     .7703162    1.020222
    indfmpir |   .9769956   .0146415    -1.55   0.123     .9484034     1.00645
    ridageyr |   1.048482   .0025674    19.33   0.000     1.043406    1.053583
       _cons |   .0414227   .0049295   -26.75   0.000     .0327194    .0524411
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   1.049833   .1107816     0.46   0.646     .8517074    1.294047
     _IMJ2_2 |   1.027226    .181276     0.15   0.879     .7240473    1.457354
        gndr |   2.826599   .1947695    15.08   0.000     2.465771    3.240227
_Irace_eth_2 |   2.532578     .19621    11.99   0.000     2.172082    2.952905
_Irace_eth_3 |   1.025286   .0919623     0.28   0.781     .8583018    1.224758
_Irace_eth_4 |   1.108953   .1104565     1.04   0.301     .9102858    1.350978
    indfmpir |   .9028455   .0175096    -5.27   0.000     .8688005    .9382246
    ridageyr |   1.089011   .0030916    30.04   0.000       1.0829    1.095155
       _cons |   .0041487   .0005716   -39.81   0.000     .0031573    .0054515
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.E <- c( 1.114028   ,1.406301   ,1.030628    ,1.038105   ,1.049833   ,1.027226    )
RR.E <- matrix(data.E, nrow = 3, ncol = 2, byrow = TRUE)
RR.E
         [,1]     [,2]
[1,] 1.114028 1.406301
[2,] 1.030628 1.038105
[3,] 1.049833 1.027226
D_RR <- (RR0-RR.E)/RR0
100*D_RR
          [,1]      [,2]
[1,] -3.039496 -4.079933
[2,] -2.800556 -3.858659
[3,] -3.882663 -4.632925
100*mean(abs(D_RR))
[1] 3.715706

Race/Ethnicity

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr i.EDUC_cat indfmpir ridageyr,rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,611
Number of PSUs     =       214                Population size   =  298,035,877
                                              Subpop. no. obs   =       19,441
                                              Subpop. size      =  133,015,285
                                              Design df         =          109
                                              F(  27,     83)   =        50.92
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   1.097158   .0905562     1.12   0.264     .9315897    1.292152
     _IMJ2_2 |   1.368162    .173845     2.47   0.015     1.063569    1.759987
        gndr |   2.240263   .1112499    16.24   0.000     2.030273    2.471973
_IEDUC_cat_2 |   1.195458   .1333261     1.60   0.112      .958377    1.491187
_IEDUC_cat_3 |   1.010424   .1205671     0.09   0.931     .7976184    1.280006
_IEDUC_cat_4 |   1.073598   .1243135     0.61   0.541     .8534409    1.350549
_IEDUC_cat_5 |   .7568343   .0870842    -2.42   0.017     .6025024    .9506986
    indfmpir |   1.014387   .0197172     0.73   0.464     .9760511    1.054228
    ridageyr |   1.028115     .00298     9.57   0.000     1.022226    1.034038
       _cons |   .0705759   .0112729   -16.60   0.000     .0514246    .0968597
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   1.029004    .086671     0.34   0.735     .8707979    1.215954
     _IMJ2_2 |   1.022993   .1175023     0.20   0.843     .8147132    1.284518
        gndr |   2.409643   .1242765    17.05   0.000     2.175502    2.668984
_IEDUC_cat_2 |   1.170981   .1417908     1.30   0.195     .9211342    1.488595
_IEDUC_cat_3 |    1.31705    .140536     2.58   0.011     1.065994    1.627232
_IEDUC_cat_4 |   1.316915   .1457929     2.49   0.014     1.057463    1.640025
_IEDUC_cat_5 |   .9242253   .1071901    -0.68   0.498      .734427    1.163073
    indfmpir |   1.003123   .0164963     0.19   0.850     .9709549    1.036357
    ridageyr |   1.048673    .002499    19.94   0.000     1.043732    1.053638
       _cons |    .033369   .0048066   -23.60   0.000     .0250816    .0443946
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   1.047966   .1097063     0.45   0.655     .8516059    1.289601
     _IMJ2_2 |   .9823627   .1725749    -0.10   0.920     .6935212    1.391502
        gndr |   2.721885   .1877448    14.52   0.000     2.374095    3.120623
_IEDUC_cat_2 |   1.352227   .1948216     2.09   0.039     1.016334    1.799132
_IEDUC_cat_3 |   1.232868   .1688532     1.53   0.129     .9397832    1.617357
_IEDUC_cat_4 |   1.292752   .1990743     1.67   0.098     .9527195    1.754146
_IEDUC_cat_5 |   .8005932   .1390504    -1.28   0.203     .5674295    1.129567
    indfmpir |   .9183684    .020075    -3.90   0.000     .8794301    .9590308
    ridageyr |    1.08761   .0030514    29.93   0.000     1.081579    1.093674
       _cons |   .0044405   .0007085   -33.95   0.000     .0032367    .0060922
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.R <-c(1.097158   ,1.368162    ,1.029004    ,1.022993,1.047966   ,.9823627)
RR.R <- matrix(data.R, nrow = 3, ncol = 2, byrow = TRUE)
RR.R
         [,1]      [,2]
[1,] 1.097158 1.3681620
[2,] 1.029004 1.0229930
[3,] 1.047966 0.9823627
D_RR <- (RR0-RR.R)/RR0
100*D_RR
          [,1]       [,2]
[1,] -1.479144 -1.2572770
[2,] -2.638569 -2.3467582
[3,] -3.697921 -0.0631632
100*mean(abs(D_RR))
[1] 1.913805

Income

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr i.EDUC_cat i.race_eth ridageyr,rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,182
Number of PSUs     =       214                Population size   =  306,497,065
                                              Subpop. no. obs   =       21,012
                                              Subpop. size      =  141,476,473
                                              Design df         =          109
                                              F(  33,     77)   =        51.18
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   1.100949   .0897144     1.18   0.240     .9367537    1.293924
     _IMJ2_2 |   1.245111   .1567605     1.74   0.084     .9701481    1.598005
        gndr |   2.233306   .1054658    17.01   0.000      2.03376    2.452431
_IEDUC_cat_2 |   1.147835   .1247987     1.27   0.207     .9253228    1.423854
_IEDUC_cat_3 |   1.033004   .1174961     0.29   0.776      .824513    1.294215
_IEDUC_cat_4 |   1.071073   .1239685     0.59   0.554     .8515162    1.347241
_IEDUC_cat_5 |   .7463866   .0853624    -2.56   0.012     .5950057    .9362818
_Irace_eth_2 |   1.224852   .0722405     3.44   0.001     1.089726    1.376735
_Irace_eth_3 |    .957524   .0727378    -0.57   0.569     .8236879    1.113106
_Irace_eth_4 |   .8930853   .0654535    -1.54   0.126     .7723404    1.032707
    ridageyr |   1.028046     .00289     9.84   0.000     1.022334     1.03379
       _cons |   .0739079   .0127284   -15.13   0.000     .0525353    .1039753
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   1.020784    .087193     0.24   0.810     .8618072    1.209088
     _IMJ2_2 |   .9092115   .1031391    -0.84   0.403     .7261433    1.138433
        gndr |   2.391754   .1199918    17.38   0.000     2.165376      2.6418
_IEDUC_cat_2 |    1.04338   .1140454     0.39   0.698     .8401532    1.295766
_IEDUC_cat_3 |   1.195339    .121385     1.76   0.082     .9774227     1.46184
_IEDUC_cat_4 |   1.168547   .1205868     1.51   0.134     .9524043    1.433742
_IEDUC_cat_5 |   .8168633   .0878183    -1.88   0.063     .6601037     1.01085
_Irace_eth_2 |   1.372931   .0855804     5.08   0.000     1.213372    1.553471
_Irace_eth_3 |   .8625425   .0607601    -2.10   0.038     .7501466    .9917789
_Irace_eth_4 |   .9167614   .0620634    -1.28   0.202     .8016491    1.048403
    ridageyr |   1.048983   .0025377    19.77   0.000     1.043965    1.054024
       _cons |   .0371727   .0058772   -20.82   0.000     .0271728    .0508528
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   1.072668   .1106669     0.68   0.498     .8743012    1.316041
     _IMJ2_2 |   1.017075   .1751403     0.10   0.922     .7229874    1.430789
        gndr |   2.753539   .1856125    15.03   0.000     2.409177    3.147124
_IEDUC_cat_2 |   1.066084   .1504759     0.45   0.651     .8059292    1.410217
_IEDUC_cat_3 |   1.007851    .138477     0.06   0.955     .7675906    1.323314
_IEDUC_cat_4 |   .9931289    .148096    -0.05   0.963     .7390076    1.334634
_IEDUC_cat_5 |   .5810971   .0932102    -3.38   0.001     .4228437    .7985784
_Irace_eth_2 |   2.619565   .2030051    12.43   0.000     2.246592    3.054458
_Irace_eth_3 |   1.044106   .0969141     0.46   0.643     .8686578     1.25499
_Irace_eth_4 |   1.169005   .1077067     1.69   0.093      .973891     1.40321
    ridageyr |   1.088866   .0028171    32.91   0.000     1.083297    1.094464
       _cons |   .0035082    .000636   -31.18   0.000     .0024492     .005025
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.I <- c(1.100949,1.245111   ,1.020784    ,.9092115,1.072668,1.017075)
RR.I <- matrix(data.I, nrow = 3, ncol = 2, byrow = TRUE)
RR.I
         [,1]      [,2]
[1,] 1.100949 1.2451110
[2,] 1.020784 0.9092115
[3,] 1.072668 1.0170750
D_RR <- (RR0-RR.I)/RR0
100*D_RR
          [,1]      [,2]
[1,] -1.829784  7.849692
[2,] -1.818661  9.036670
[3,] -6.142223 -3.598947
100*mean(abs(D_RR))
[1] 5.045996

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr i.EDUC_cat i.race_eth indfmpir,rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,611
Number of PSUs     =       214                Population size   =  298,035,877
                                              Subpop. no. obs   =       19,441
                                              Subpop. size      =  133,015,285
                                              Design df         =          109
                                              F(  33,     77)   =        25.79
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   .9571534   .0776759    -0.54   0.591     .8149453    1.124177
     _IMJ2_2 |   1.216895   .1511794     1.58   0.117     .9513013     1.55664
        gndr |   2.163565   .1082695    15.42   0.000     1.959276    2.389154
_IEDUC_cat_2 |   1.058413   .1193842     0.50   0.616     .8463808    1.323564
_IEDUC_cat_3 |   .8682652   .1058654    -1.16   0.249     .6818712    1.105611
_IEDUC_cat_4 |   .8815593   .1039136    -1.07   0.287     .6978948    1.113559
_IEDUC_cat_5 |   .6338603   .0768632    -3.76   0.000     .4984439    .8060663
_Irace_eth_2 |   1.215292   .0679261     3.49   0.001     1.087854     1.35766
_Irace_eth_3 |   .9164525   .0683261    -1.17   0.244     .7905625    1.062389
_Irace_eth_4 |   .8588513   .0603294    -2.17   0.032     .7472306    .9871459
    indfmpir |   1.064036   .0195913     3.37   0.001     1.025907    1.103583
       _cons |   .2188138   .0253005   -13.14   0.000     .1739999    .2751696
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   .8176119   .0695524    -2.37   0.020     .6907557     .967765
     _IMJ2_2 |   .8307283   .1001639    -1.54   0.127     .6541455    1.054979
        gndr |   2.266055   .1150376    16.11   0.000     2.049149     2.50592
_IEDUC_cat_2 |   .9237482   .1098926    -0.67   0.506     .7297172    1.169372
_IEDUC_cat_3 |   .9832259   .1084227    -0.15   0.878     .7901972    1.223407
_IEDUC_cat_4 |   .9108924   .1044319    -0.81   0.417     .7257434    1.143276
_IEDUC_cat_5 |    .651794   .0768885    -3.63   0.000     .5159072    .8234725
_Irace_eth_2 |   1.279481   .0851099     3.71   0.000     1.121442    1.459791
_Irace_eth_3 |   .7535341   .0524306    -4.07   0.000     .6564652    .8649561
_Irace_eth_4 |   .8260827   .0578152    -2.73   0.007     .7190871    .9489985
    indfmpir |    1.08352   .0190219     4.57   0.000     1.046468    1.121885
       _cons |   .2604361   .0335856   -10.43   0.000     .2016967    .3362819
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |    .719317   .0737898    -3.21   0.002      .586977    .8814944
     _IMJ2_2 |   .6899826   .1133243    -2.26   0.026     .4982707    .9554566
        gndr |   2.467555    .163268    13.65   0.000     2.164283    2.813323
_IEDUC_cat_2 |   .9170404   .1321449    -0.60   0.549     .6892137    1.220178
_IEDUC_cat_3 |   .7931513   .1117647    -1.64   0.103     .5998805     1.04869
_IEDUC_cat_4 |    .736807   .1160692    -1.94   0.055      .539211    1.006813
_IEDUC_cat_5 |   .4658245   .0814792    -4.37   0.000     .3293546    .6588413
_Irace_eth_2 |   2.217334   .1618013    10.91   0.000      1.91876    2.562368
_Irace_eth_3 |   .7404327   .0628494    -3.54   0.001     .6257816    .8760894
_Irace_eth_4 |   .9471997   .0926923    -0.55   0.580     .7802045    1.149939
    indfmpir |   1.064766   .0238115     2.81   0.006     1.018603    1.113021
       _cons |    .157771   .0222775   -13.08   0.000     .1192578    .2087215
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.A <- c(.9571534,1.216895,.8176119,.8307283,.719317,.6899826)
RR.A <- matrix(data.A, nrow = 3, ncol = 2, byrow = TRUE)
RR.A
          [,1]      [,2]
[1,] 0.9571534 1.2168950
[2,] 0.8176119 0.8307283
[3,] 0.7193170 0.6899826
D_RR <- (RR0-RR.A)/RR0
100*D_RR
         [,1]     [,2]
[1,] 11.47026  9.93795
[2,] 18.44685 16.88863
[3,] 28.82243 29.71858
100*mean(abs(D_RR))
[1] 19.21412

Result

Of the variables above, race has the least average change in RR; it will be excluded from the next cycle.

RR.1 <- RR.R

Deletion Cycle 2

c(111,222,222,222,333,222)

Education

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr indfmpir ridageyr,rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,616
Number of PSUs     =       214                Population size   =  298,070,653
                                              Subpop. no. obs   =       19,446
                                              Subpop. size      =  133,050,061
                                              Design df         =          109
                                              F(  15,     95)   =       103.68
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   1.130602   .0929024     1.49   0.138     .9606839    1.330573
     _IMJ2_2 |   1.424398   .1812572     2.78   0.006     1.106875    1.833008
        gndr |   2.262358   .1124539    16.42   0.000     2.050105    2.496587
    indfmpir |   .9747516   .0176818    -1.41   0.161     .9403293    1.010434
    ridageyr |    1.02822   .0029215     9.79   0.000     1.022446    1.034027
       _cons |   .0753972   .0084576   -23.04   0.000     .0603672    .0941693
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   1.062758    .090334     0.72   0.475     .8979879    1.257762
     _IMJ2_2 |   1.068938   .1237659     0.58   0.566     .8497483    1.344666
        gndr |   2.420194   .1221912    17.51   0.000     2.189737    2.674904
    indfmpir |   .9756942    .013897    -1.73   0.087     .9485359     1.00363
    ridageyr |    1.04869   .0025453    19.59   0.000     1.043658    1.053747
       _cons |   .0416069   .0044129   -29.98   0.000     .0337187    .0513403
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   1.095178   .1124804     0.89   0.378     .8934709    1.342421
     _IMJ2_2 |   1.032786   .1841635     0.18   0.857      .725308    1.470612
        gndr |   2.742077   .1894962    14.60   0.000     2.391087    3.144589
    indfmpir |    .877164   .0165874    -6.93   0.000     .8448967    .9106636
    ridageyr |    1.08794   .0031174    29.41   0.000     1.081779    1.094136
       _cons |   .0055111   .0006687   -42.87   0.000     .0043332    .0070093
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.E <- c(1.130602   ,1.424398   ,1.062758    ,1.068938   ,1.095178,1.032786   )
RR.E <- matrix(data.E, nrow = 3, ncol = 2, byrow = TRUE)
RR.E
         [,1]     [,2]
[1,] 1.130602 1.424398
[2,] 1.062758 1.068938
[3,] 1.095178 1.032786
D_RR <- (RR.1-RR.E)/RR.1
100*D_RR
          [,1]      [,2]
[1,] -3.048239 -4.110332
[2,] -3.280259 -4.491233
[3,] -4.505108 -5.132860
100*mean(abs(D_RR))
[1] 4.094672

Income

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr i.EDUC_cat ridageyr,rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,182
Number of PSUs     =       214                Population size   =  306,497,065
                                              Subpop. no. obs   =       21,012
                                              Subpop. size      =  141,476,473
                                              Design df         =          109
                                              F(  24,     86)   =        63.78
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   1.120333   .0904202     1.41   0.162     .9547212    1.314672
     _IMJ2_2 |   1.265921   .1579794     1.89   0.061     .9885289    1.621154
        gndr |   2.217553   .1046931    16.87   0.000     2.019467    2.435069
_IEDUC_cat_2 |   1.200042   .1260383     1.74   0.085     .9745244    1.477748
_IEDUC_cat_3 |   1.083982   .1179357     0.74   0.460     .8737215    1.344842
_IEDUC_cat_4 |   1.123472   .1212864     1.08   0.283     .9070632    1.391512
_IEDUC_cat_5 |   .7745404   .0834627    -2.37   0.019     .6255914    .9589532
    ridageyr |   1.028163   .0028324    10.08   0.000     1.022564    1.033792
       _cons |   .0707093   .0107022   -17.50   0.000     .0523838    .0954457
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   1.050681   .0891855     0.58   0.561     .8879875    1.243183
     _IMJ2_2 |   .9334824   .1047636    -0.61   0.541     .7473162    1.166025
        gndr |    2.36321   .1179903    17.23   0.000     2.140555    2.609025
_IEDUC_cat_2 |   1.143247   .1228093     1.25   0.215     .9240093    1.414504
_IEDUC_cat_3 |   1.322551   .1285041     2.88   0.005     1.090883    1.603419
_IEDUC_cat_4 |   1.296456   .1259608     2.67   0.009     1.069371    1.571763
_IEDUC_cat_5 |   .8956914   .0900997    -1.10   0.276     .7337916    1.093312
    ridageyr |    1.04917   .0024816    20.29   0.000     1.044263      1.0541
       _cons |   .0339541   .0045839   -25.06   0.000     .0259829    .0443709
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   1.124236    .113975     1.16   0.251     .9195893    1.374425
     _IMJ2_2 |   1.028818    .176697     0.17   0.869     .7319902    1.446011
        gndr |    2.65939   .1794499    14.50   0.000     2.326483    3.039933
_IEDUC_cat_2 |    1.18867   .1625432     1.26   0.209     .9064798    1.558707
_IEDUC_cat_3 |   1.071445   .1370717     0.54   0.591     .8314801    1.380664
_IEDUC_cat_4 |   1.050041   .1449439     0.35   0.724     .7987121    1.380455
_IEDUC_cat_5 |   .5855999   .0870506    -3.60   0.000     .4361619    .7862386
    ridageyr |    1.08675   .0028158    32.11   0.000     1.081184    1.092346
       _cons |   .0043306   .0006861   -34.35   0.000     .0031635    .0059282
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.I <-  c(1.120333   ,1.265921   ,1.050681   ,.9334824,1.124236    ,1.028818    )
RR.I <- matrix(data.I, nrow = 3, ncol = 2, byrow = TRUE)
RR.I
         [,1]      [,2]
[1,] 1.120333 1.2659210
[2,] 1.050681 0.9334824
[3,] 1.124236 1.0288180
D_RR <- (RR.1-RR.I)/RR.1
100*D_RR
          [,1]      [,2]
[1,] -2.112276  7.472872
[2,] -2.106600  8.749874
[3,] -7.277908 -4.728936
100*mean(abs(D_RR))
[1] 5.408078

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr i.EDUC_cat indfmpir,rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,611
Number of PSUs     =       214                Population size   =  298,035,877
                                              Subpop. no. obs   =       19,441
                                              Subpop. size      =  133,015,285
                                              Design df         =          109
                                              F(  24,     86)   =        23.15
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   .9741474   .0785225    -0.32   0.746     .8303135    1.142897
     _IMJ2_2 |   1.237044   .1532037     1.72   0.089     .9677943      1.5812
        gndr |   2.146704   .1072406    15.29   0.000      1.94434     2.37013
_IEDUC_cat_2 |   1.122798   .1244916     1.04   0.299     .9012888    1.398747
_IEDUC_cat_3 |   .9274312   .1100272    -0.64   0.527     .7331021    1.173273
_IEDUC_cat_4 |   .9412803   .1055646    -0.54   0.591     .7536765    1.175582
_IEDUC_cat_5 |    .671777   .0772405    -3.46   0.001     .5348793    .8437125
    indfmpir |   1.063945     .02008     3.28   0.001     1.024882    1.104496
       _cons |   .2045592   .0220203   -14.74   0.000     .1652572     .253208
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   .8432503    .071412    -2.01   0.047     .7129546    .9973581
     _IMJ2_2 |   .8569868   .1026542    -1.29   0.200     .6758779    1.086626
        gndr |   2.237223    .113104    15.93   0.000      2.02392    2.473007
_IEDUC_cat_2 |   1.051634   .1236446     0.43   0.669     .8330332      1.3276
_IEDUC_cat_3 |   1.143662   .1224207     1.25   0.213     .9250389    1.413955
_IEDUC_cat_4 |   1.063303     .11727     0.56   0.579     .8545264    1.323088
_IEDUC_cat_5 |   .7559177    .086523    -2.44   0.016     .6024922    .9484133
    indfmpir |   1.087224   .0182319     4.99   0.000     1.051682    1.123966
       _cons |   .2181626   .0251307   -13.22   0.000     .1736311    .2741152
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   .7669189   .0762031    -2.67   0.009     .6298286    .9338488
     _IMJ2_2 |   .7231507   .1181014    -1.98   0.050     .5231836    .9995475
        gndr |   2.393776   .1586051    13.17   0.000     2.099192    2.729701
_IEDUC_cat_2 |   1.138728   .1575779     0.94   0.350     .8655811     1.49807
_IEDUC_cat_3 |   .9949971   .1334031    -0.04   0.970     .7628106    1.297857
_IEDUC_cat_4 |    .932527   .1381744    -0.47   0.638     .6952184     1.25084
_IEDUC_cat_5 |    .579824   .0959272    -3.29   0.001     .4177253    .8048254
    indfmpir |   1.047147   .0226207     2.13   0.035      1.00326    1.092955
       _cons |   .1448468   .0178198   -15.70   0.000     .1135047    .1848435
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.A <-  c(.9741474,1.237044   ,.8432503,.8569868,.7669189,.7231507)
RR.A <- matrix(data.A, nrow = 3, ncol = 2, byrow = TRUE)
RR.A
          [,1]      [,2]
[1,] 0.9741474 1.2370440
[2,] 0.8432503 0.8569868
[3,] 0.7669189 0.7231507
D_RR <- (RR.1-RR.A)/RR.1
100*D_RR
         [,1]      [,2]
[1,] 11.21175  9.583514
[2,] 18.05180 16.227501
[3,] 26.81834 26.386588
100*mean(abs(D_RR))
[1] 18.04658

Result

Of the variables above, education has the least average change in RR; it will be excluded from the next cycle.

RR.2 <- RR.E

Deletion Cycle 3

c(111,222,222,222,333,222)

Income

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr ridageyr,rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,190
Number of PSUs     =       214                Population size   =  306,545,053
                                              Subpop. no. obs   =       21,020
                                              Subpop. size      =  141,524,461
                                              Design df         =          109
                                              F(  12,     98)   =       135.85
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   1.174563   .0941209     2.01   0.047     1.002078    1.376737
     _IMJ2_2 |   1.347399    .168559     2.38   0.019     1.051516     1.72654
        gndr |   2.222371   .1048229    16.93   0.000     2.024031    2.440147
    ridageyr |   1.026825   .0027857     9.76   0.000     1.021319    1.032361
       _cons |   .0735952   .0079714   -24.09   0.000     .0593769    .0912182
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   1.100645    .093988     1.12   0.264      .929275    1.303618
     _IMJ2_2 |    .991614   .1125176    -0.07   0.941     .7919053    1.241687
        gndr |   2.362098   .1160804    17.49   0.000     2.142879    2.603742
    ridageyr |   1.048138   .0025136    19.60   0.000     1.043168    1.053131
       _cons |   .0398168   .0040783   -31.47   0.000     .0325014    .0487787
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   1.218877   .1194473     2.02   0.046     1.003708    1.480172
     _IMJ2_2 |   1.122065   .1956506     0.66   0.510     .7942012    1.585278
        gndr |   2.668387   .1793587    14.60   0.000     2.335565    3.048636
    ridageyr |   1.085236   .0027698    32.05   0.000      1.07976    1.090739
       _cons |   .0040827   .0005002   -44.90   0.000     .0032025    .0052047
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.I <- c(1.174563   ,1.347399    ,1.100645,.991614,1.218877   ,1.122065   )
RR.I <- matrix(data.I, nrow = 3, ncol = 2, byrow = TRUE)
RR.I
         [,1]     [,2]
[1,] 1.174563 1.347399
[2,] 1.100645 0.991614
[3,] 1.218877 1.122065
D_RR <- (RR.2-RR.I)/RR.2
100*D_RR
           [,1]      [,2]
[1,]  -3.888283  5.405722
[2,]  -3.564970  7.233722
[3,] -11.294876 -8.644482
100*mean(abs(D_RR))
[1] 6.672009

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr indfmpir,rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,616
Number of PSUs     =       214                Population size   =  298,070,653
                                              Subpop. no. obs   =       19,446
                                              Subpop. size      =  133,050,061
                                              Design df         =          109
                                              F(  12,     98)   =        43.93
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   1.001713   .0803987     0.02   0.983     .8543932    1.174434
     _IMJ2_2 |    1.28306   .1587967     2.01   0.046     1.003959    1.639751
        gndr |    2.17632    .108407    15.61   0.000     1.971726    2.402143
    indfmpir |   1.016521   .0181404     0.92   0.361     .9811959    1.053118
       _cons |   .2004787   .0112409   -28.66   0.000      .179393    .2240428
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   .8688678   .0744245    -1.64   0.104     .7332024    1.029635
     _IMJ2_2 |   .8923507   .1071301    -0.95   0.345     .7033936    1.132069
        gndr |    2.26393   .1112692    16.63   0.000     2.053799    2.495561
    indfmpir |   1.046684    .015605     3.06   0.003     1.016208    1.078074
       _cons |   .2348403   .0130155   -26.14   0.000     .2104103    .2621067
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   .7980226   .0777503    -2.32   0.022     .6578892    .9680051
     _IMJ2_2 |   .7616256    .125088    -1.66   0.100      .550012    1.054656
        gndr |    2.44473   .1616624    13.52   0.000     2.144429    2.787085
    indfmpir |   .9830073   .0186337    -0.90   0.368      .946761    1.020641
       _cons |   .1453275   .0107124   -26.17   0.000      .125574    .1681884
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.A <-  c(1.001713   ,1.28306   ,.8688678,.8923507,.7980226,.7616256)
RR.A <- matrix(data.A, nrow = 3, ncol = 2, byrow = TRUE)
RR.A
          [,1]      [,2]
[1,] 1.0017130 1.2830600
[2,] 0.8688678 0.8923507
[3,] 0.7980226 0.7616256
D_RR <- (RR.2-RR.A)/RR.2
100*D_RR
         [,1]      [,2]
[1,] 11.40003  9.922648
[2,] 18.24406 16.519882
[3,] 27.13307 26.255236
100*mean(abs(D_RR))
[1] 18.24582

Result

Of the variables above, income has the least average change in RR; it will be excluded from the next cycle.

RR.3 <- RR.I

Deletion Cycle 4

c(111,222,222,222,333,222)

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr,rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,190
Number of PSUs     =       214                Population size   =  306,545,053
                                              Subpop. no. obs   =       21,020
                                              Subpop. size      =  141,524,461
                                              Design df         =          109
                                              F(   9,    101)   =        58.58
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   1.024774   .0793717     0.32   0.753     .8789415    1.194803
     _IMJ2_2 |   1.191097   .1424676     1.46   0.147     .9397054    1.509742
        gndr |   2.149441   .1016438    16.18   0.000     1.957139    2.360638
       _cons |   .2106798   .0092474   -35.48   0.000     .1931263    .2298288
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   .8685494   .0741751    -1.65   0.102     .7333053    1.028737
     _IMJ2_2 |   .7976393   .0922267    -1.96   0.053     .6342811     1.00307
        gndr |     2.2241   .1066723    16.67   0.000     2.022417    2.445896
       _cons |   .2738866   .0110967   -31.96   0.000     .2527532    .2967871
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   .8321702   .0773206    -1.98   0.051      .692206    1.000435
     _IMJ2_2 |   .7859162   .1250278    -1.51   0.133     .5733796    1.077234
        gndr |   2.410192   .1540981    13.76   0.000     2.123333    2.735804
       _cons |   .1379807   .0075147   -36.37   0.000     .1238625    .1537082
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.A <-  c(1.024774      ,1.191097      ,.8685494,.7976393,.8321702,.7859162)
RR.A <- matrix(data.A, nrow = 3, ncol = 2, byrow = TRUE)
RR.A
          [,1]      [,2]
[1,] 1.0247740 1.1910970
[2,] 0.8685494 0.7976393
[3,] 0.8321702 0.7859162
D_RR <- (RR.3-RR.A)/RR.3
100*D_RR
         [,1]     [,2]
[1,] 12.75274 11.60028
[2,] 21.08724 19.56151
[3,] 31.72648 29.95805
100*mean(abs(D_RR))
[1] 21.11438

Result

Of the variables above, no average change of less than 10% is found. Therefore the model from deletion cycle 3 is the final model.

Mediation Analysis

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr  ridageyr, rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,190
Number of PSUs     =       214                Population size   =  306,545,053
                                              Subpop. no. obs   =       21,020
                                              Subpop. size      =  141,524,461
                                              Design df         =          109
                                              F(  12,     98)   =       135.85
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   1.174563   .0941209     2.01   0.047     1.002078    1.376737
     _IMJ2_2 |   1.347399    .168559     2.38   0.019     1.051516     1.72654
        gndr |   2.222371   .1048229    16.93   0.000     2.024031    2.440147
    ridageyr |   1.026825   .0027857     9.76   0.000     1.021319    1.032361
       _cons |   .0735952   .0079714   -24.09   0.000     .0593769    .0912182
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   1.100645    .093988     1.12   0.264      .929275    1.303618
     _IMJ2_2 |    .991614   .1125176    -0.07   0.941     .7919053    1.241687
        gndr |   2.362098   .1160804    17.49   0.000     2.142879    2.603742
    ridageyr |   1.048138   .0025136    19.60   0.000     1.043168    1.053131
       _cons |   .0398168   .0040783   -31.47   0.000     .0325014    .0487787
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   1.218877   .1194473     2.02   0.046     1.003708    1.480172
     _IMJ2_2 |   1.122065   .1956506     0.66   0.510     .7942012    1.585278
        gndr |   2.668387   .1793587    14.60   0.000     2.335565    3.048636
    ridageyr |   1.085236   .0027698    32.05   0.000      1.07976    1.090739
       _cons |   .0040827   .0005002   -44.90   0.000     .0032025    .0052047
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.

Smoking

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr  ridageyr i.SMK_cat, rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,139
Number of PSUs     =       214                Population size   =  306,306,164
                                              Subpop. no. obs   =       20,969
                                              Subpop. size      =  141,285,572
                                              Design df         =          109
                                              F(  24,     86)   =        66.50
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |    1.12941   .0954849     1.44   0.153     .9551684    1.335438
     _IMJ2_2 |   1.264867   .1629115     1.82   0.071     .9798995    1.632706
        gndr |   2.204669   .1036174    16.82   0.000     2.008577    2.419904
    ridageyr |    1.02604   .0028595     9.22   0.000     1.020388    1.031723
 _ISMK_cat_1 |    1.05086   .0791107     0.66   0.511     .9052022    1.219957
 _ISMK_cat_2 |   1.049977   .0767022     0.67   0.506     .9084489    1.213555
 _ISMK_cat_3 |   1.224928   .1043444     2.38   0.019     1.034636    1.450218
 _ISMK_cat_4 |    1.32306   .2455705     1.51   0.134     .9158327    1.911363
       _cons |   .0736428   .0080861   -23.76   0.000     .0592405    .0915467
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   1.098333   .0956865     1.08   0.284     .9241552    1.305338
     _IMJ2_2 |   .9869493   .1101641    -0.12   0.907     .7910727    1.231327
        gndr |   2.352808   .1174591    17.14   0.000     2.131155    2.597515
    ridageyr |   1.047727   .0026051    18.75   0.000     1.042577    1.052903
 _ISMK_cat_1 |   1.118922   .0783662     1.60   0.112     .9739012    1.285538
 _ISMK_cat_2 |   1.058459   .0799253     0.75   0.453     .9113335    1.229336
 _ISMK_cat_3 |   .9497629   .1059026    -0.46   0.645     .7614424    1.184659
 _ISMK_cat_4 |   .9404479   .1465534    -0.39   0.694     .6905574    1.280766
       _cons |    .039537   .0041616   -30.69   0.000     .0320923    .0487086
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   1.158231   .1181643     1.44   0.153     .9461927    1.417787
     _IMJ2_2 |   1.043562   .1869673     0.24   0.812     .7316487    1.488448
        gndr |   2.643404   .1772368    14.50   0.000     2.314467    3.019092
    ridageyr |   1.084459   .0027338    32.16   0.000     1.079054    1.089891
 _ISMK_cat_1 |   1.134997   .0918373     1.56   0.120     .9668234    1.332423
 _ISMK_cat_2 |    1.22129   .1060835     2.30   0.023     1.028139    1.450728
 _ISMK_cat_3 |   1.036988   .1039378     0.36   0.718     .8501577    1.264876
 _ISMK_cat_4 |   1.415986   .2678241     1.84   0.069     .9733133    2.059991
       _cons |    .003986   .0004991   -44.12   0.000     .0031099    .0051089
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.S <-  c(1.12941      ,1.264867      ,1.098333       ,.9869493,1.158231   ,1.043562   )
RR.S <- matrix(data.S, nrow = 3, ncol = 2, byrow = TRUE)
RR.S
         [,1]      [,2]
[1,] 1.129410 1.2648670
[2,] 1.098333 0.9869493
[3,] 1.158231 1.0435620
D_RR <- (RR.3-RR.S)/RR.3
100*D_RR
          [,1]      [,2]
[1,] 3.8442382 6.1252829
[2,] 0.2100586 0.4704149
[3,] 4.9755636 6.9962970
100*mean(abs(D_RR))
[1] 3.770309

Alcohol Use

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr  ridageyr i.AL_cat, rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,710
Number of PSUs     =       214                Population size   =  297,316,373
                                              Subpop. no. obs   =       19,540
                                              Subpop. size      =  132,295,780
                                              Design df         =          109
                                              F(  18,     92)   =        88.81
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   1.104569   .0871709     1.26   0.210     .9446335    1.291584
     _IMJ2_2 |   1.192533   .1537121     1.37   0.175     .9236827    1.539637
        gndr |   2.290824   .1174497    16.17   0.000     2.069479    2.535844
    ridageyr |   1.029449   .0030117     9.92   0.000     1.023497    1.035435
  _IAL_cat_1 |   1.075182   .0758649     1.03   0.307     .9348603    1.236565
  _IAL_cat_2 |   1.363427   .1136229     3.72   0.000     1.155844    1.608289
       _cons |    .061846   .0075042   -22.94   0.000     .0486262    .0786599
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   1.056009   .0921643     0.62   0.534     .8882681    1.255426
     _IMJ2_2 |   .9712096   .1171703    -0.24   0.809     .7646593    1.233553
        gndr |   2.431123   .1269229    17.02   0.000     2.192143    2.696156
    ridageyr |   1.050909   .0026987    19.34   0.000     1.045574    1.056271
  _IAL_cat_1 |   1.113318   .0766831     1.56   0.122     .9712518    1.276164
  _IAL_cat_2 |   1.353463   .1041646     3.93   0.000     1.161987    1.576491
       _cons |   .0328064   .0037875   -29.60   0.000     .0260967    .0412413
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   1.074217   .1160176     0.66   0.509     .8672182    1.330625
     _IMJ2_2 |   1.078072   .1937506     0.42   0.677     .7550105    1.539369
        gndr |    2.75633    .199093    14.04   0.000     2.388679    3.180569
    ridageyr |   1.090339   .0031013    30.41   0.000      1.08421    1.096503
  _IAL_cat_1 |   1.246252   .0911208     3.01   0.003     1.078129    1.440592
  _IAL_cat_2 |   1.699178   .1691396     5.33   0.000     1.394946    2.069762
       _cons |   .0028743   .0004133   -40.70   0.000     .0021616    .0038219
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.Al <-  c(1.104569      ,1.192533   ,1.056009   ,.9712096,1.074217      ,1.078072   )
RR.Al <- matrix(data.Al, nrow = 3, ncol = 2, byrow = TRUE)
RR.Al
         [,1]      [,2]
[1,] 1.104569 1.1925330
[2,] 1.056009 0.9712096
[3,] 1.074217 1.0780720
D_RR <- (RR.3-RR.Al)/RR.3
100*D_RR
          [,1]      [,2]
[1,]  5.959152 11.493700
[2,]  4.055440  2.057696
[3,] 11.868302  3.920718
100*mean(abs(D_RR))
[1] 6.559168

BMI

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr  ridageyr bmxbmi, rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,080
Number of PSUs     =       214                Population size   =  305,959,182
                                              Subpop. no. obs   =       20,910
                                              Subpop. size      =  140,938,589
                                              Design df         =          109
                                              F(  15,     95)   =       118.50
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   1.280623   .1074311     2.95   0.004     1.084458    1.512272
     _IMJ2_2 |   1.460632   .1885991     2.93   0.004     1.130833    1.886614
        gndr |    2.31898   .1099931    17.73   0.000     2.110911    2.547559
    ridageyr |   1.024742    .002853     8.78   0.000     1.019103    1.030412
      bmxbmi |   1.063064    .004757    13.67   0.000     1.053677    1.072534
       _cons |   .0133227   .0022324   -25.77   0.000     .0095578    .0185706
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   1.225362   .1047028     2.38   0.019     1.034465    1.451487
     _IMJ2_2 |   1.098991   .1294114     0.80   0.425     .8702339    1.387882
        gndr |   2.509066   .1301915    17.73   0.000     2.263856    2.780837
    ridageyr |   1.046205    .002573    18.37   0.000     1.041117    1.051317
      bmxbmi |   1.077954   .0041276    19.60   0.000     1.069804    1.086166
       _cons |   .0046248   .0007999   -31.08   0.000     .0032825    .0065158
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   1.424801   .1414582     3.57   0.001     1.170297    1.734653
     _IMJ2_2 |    1.31562   .2241156     1.61   0.110     .9386436    1.843998
        gndr |   2.970084   .2024381    15.97   0.000     2.594779    3.399673
    ridageyr |   1.084132   .0029276    29.91   0.000     1.078345     1.08995
      bmxbmi |   1.104941   .0056387    19.55   0.000     1.093822    1.116173
       _cons |   .0002026   .0000449   -38.34   0.000     .0001306    .0003145
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.B <-  c(1.280623   ,1.460632   ,1.225362   ,1.098991   ,1.424801   ,1.31562   )
RR.B <- matrix(data.B, nrow = 3, ncol = 2, byrow = TRUE)
RR.B
         [,1]     [,2]
[1,] 1.280623 1.460632
[2,] 1.225362 1.098991
[3,] 1.424801 1.315620
D_RR <- (RR.3-RR.B)/RR.3
100*D_RR
           [,1]       [,2]
[1,]  -9.029741  -8.403821
[2,] -11.331265 -10.828508
[3,] -16.894568 -17.249892
100*mean(abs(D_RR))
[1] 12.28963

Health Eating Index

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ2 gndr  ridageyr hei2015, rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ2             _IMJ2_0-2           (naturally coded; _IMJ2_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,641
Number of PSUs     =       214                Population size   =  297,338,173
                                              Subpop. no. obs   =       19,471
                                              Subpop. size      =  132,317,580
                                              Design df         =          109
                                              F(  15,     95)   =        99.37
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
     _IMJ2_1 |   1.214348    .104401     2.26   0.026     1.024097    1.439942
     _IMJ2_2 |   1.364246   .1833728     2.31   0.023      1.04519    1.780696
        gndr |   2.180875   .1078477    15.77   0.000     1.977265    2.405451
    ridageyr |   1.029401   .0029725    10.04   0.000     1.023527     1.03531
     hei2015 |   .9926355    .002118    -3.46   0.001     .9884466    .9968421
       _cons |   .0987333   .0137519   -16.62   0.000      .074916    .1301226
-------------+----------------------------------------------------------------
Stage_1_HTN  |
     _IMJ2_1 |   1.127368   .1005711     1.34   0.182      .944667    1.345405
     _IMJ2_2 |   1.010226   .1298268     0.08   0.937     .7830693    1.303277
        gndr |   2.244915   .1104387    16.44   0.000     2.036362    2.474827
    ridageyr |   1.050878   .0028085    18.57   0.000     1.045326    1.056459
     hei2015 |   .9889045   .0020313    -5.43   0.000     .9848868    .9929387
       _cons |   .0649984   .0084111   -21.12   0.000     .0502941    .0840017
-------------+----------------------------------------------------------------
Stage_2_HTN  |
     _IMJ2_1 |   1.238724   .1266002     2.09   0.039     1.011587    1.516861
     _IMJ2_2 |   1.062457   .2060491     0.31   0.755     .7234008    1.560427
        gndr |   2.514559   .1714962    13.52   0.000     2.196631    2.878503
    ridageyr |   1.089829   .0030827    30.41   0.000     1.083736    1.095956
     hei2015 |   .9829453   .0023304    -7.26   0.000     .9783374     .987575
       _cons |   .0085479   .0013591   -29.95   0.000     .0062373    .0117143
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
data.H <-  c(1.214348    ,1.364246   ,1.127368   ,1.010226   ,1.238724   ,1.062457   )
RR.H <- matrix(data.H, nrow = 3, ncol = 2, byrow = TRUE)
RR.H
         [,1]     [,2]
[1,] 1.214348 1.364246
[2,] 1.127368 1.010226
[3,] 1.238724 1.062457
D_RR <- (RR.3-RR.H)/RR.3
100*D_RR
          [,1]      [,2]
[1,] -3.387217 -1.250335
[2,] -2.427940 -1.876940
[3,] -1.628302  5.312348
100*mean(abs(D_RR))
[1] 2.64718

Results

Only BMI produced a mean change in RR greater than 10%; alcohol use produced a mean change in RR of less than 10%, but individual changes were greater than 10%; addition of smoking or healthy eating index did not produce any changes in RR greater than 10%. Therefore model 3 will include alcohol use and BMI, but not HEI or smoking.

Results

Model 1 will be the crude model, examining BP category only as a function of MJ use category; model 2 will include gender and age as confounders; and model 3 will include gender and age, as well as all mediators (tobacco use, alcohol use, & BMI).