Model Building by Deletion

Test Proportional Odds Assumption

A significant result of the score test (AKA Lagrange multiplier test) indicates that the assumption of proportional odds does not hold, in which case multinomial logistic regression must be used instead of ordinal logistic regression.

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): omodel mlogit BP_cat i.MJ gndr i.EDUC_cat i.race_eth indfmpir ridageyr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
omodel is not supported by svy with vce(linearized); see help svy estimation
for a list of Stata estimation commands that are supported by svy
r(322);

end of do-file
r(322);

Because the omodel function does not support survey data, multinomial logistic regression must be used instead of ordinal logistic regression.

Full Model

This model includes

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr i.EDUC_cat i.race_eth indfmpir ridageyr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,611
Number of PSUs     =       214                Population size   =  298,035,877
                                              Subpop. no. obs   =       19,441
                                              Subpop. size      =  133,015,285
                                              Design df         =          109
                                              F(  42,     68)   =        40.76
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |  -.0363006   .0590408    -0.61   0.540    -.1533175    .0807163
      _IMJ_2 |  -.0041059    .095461    -0.04   0.966    -.1933065    .1850947
      _IMJ_3 |   .2927856   .1938602     1.51   0.134     -.091439    .6770103
      _IMJ_4 |   .2812502   .1370245     2.05   0.043      .009672    .5528283
        gndr |   .8140264   .0505111    16.12   0.000     .7139151    .9141377
_IEDUC_cat_2 |   .1516013   .1161073     1.31   0.194    -.0785195    .3817221
_IEDUC_cat_3 |   -.017117   .1250915    -0.14   0.891    -.2650442    .2308102
_IEDUC_cat_4 |   .0454332   .1247408     0.36   0.716    -.2017989    .2926654
_IEDUC_cat_5 |  -.2973366   .1229019    -2.42   0.017    -.5409241   -.0537491
_Irace_eth_2 |   .2211874   .0558161     3.96   0.000     .1105616    .3318132
_Irace_eth_3 |  -.0091752   .0773064    -0.12   0.906     -.162394    .1440436
_Irace_eth_4 |  -.1036474   .0715179    -1.45   0.150    -.2453935    .0380988
    indfmpir |   .0185861   .0188483     0.99   0.326    -.0187707    .0559428
    ridageyr |   .0276735   .0029498     9.38   0.000     .0218271    .0335198
       _cons |  -2.629235   .1775434   -14.81   0.000     -2.98112    -2.27735
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |  -.0717828   .0613775    -1.17   0.245     -.193431    .0498654
      _IMJ_2 |  -.0207673   .1008804    -0.21   0.837     -.220709    .1791743
      _IMJ_3 |  -.1160899    .188758    -0.62   0.540    -.4902021    .2580223
      _IMJ_4 |  -.0415222   .1224468    -0.34   0.735    -.2842077    .2011634
        gndr |   .8953139   .0512615    17.47   0.000     .7937153    .9969124
_IEDUC_cat_2 |   .0865293   .1222806     0.71   0.481     -.155827    .3288855
_IEDUC_cat_3 |    .194514   .1116929     1.74   0.084    -.0268577    .4158857
_IEDUC_cat_4 |   .1925886   .1157982     1.66   0.099    -.0369196    .4220967
_IEDUC_cat_5 |  -.1571692   .1188222    -1.32   0.189    -.3926711    .0783326
_Irace_eth_2 |   .2986566   .0692219     4.31   0.000      .161461    .4358521
_Irace_eth_3 |   -.144648      .0743    -1.95   0.054    -.2919082    .0026123
_Irace_eth_4 |  -.1083194   .0726097    -1.49   0.139    -.2522294    .0355906
    indfmpir |   .0075501   .0172596     0.44   0.663    -.0266577     .041758
    ridageyr |   .0472498   .0024167    19.55   0.000       .04246    .0520395
       _cons |  -3.295797   .1650432   -19.97   0.000    -3.622907   -2.968687
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |  -.0026754   .0748614    -0.04   0.972    -.1510482    .1456974
      _IMJ_2 |   .0110587   .1231324     0.09   0.929    -.2329856    .2551031
      _IMJ_3 |   .0035981   .2455748     0.01   0.988    -.4831231    .4903193
      _IMJ_4 |   -.019241   .1720499    -0.11   0.911    -.3602384    .3217563
        gndr |   1.028395   .0692889    14.84   0.000     .8910664    1.165723
_IEDUC_cat_2 |   .1713297   .1515171     1.13   0.261    -.1289723    .4716318
_IEDUC_cat_3 |   .0999278   .1446825     0.69   0.491    -.1868283    .3866839
_IEDUC_cat_4 |   .1405151   .1638887     0.86   0.393    -.1843069    .4653372
_IEDUC_cat_5 |  -.3236899   .1825127    -1.77   0.079    -.6854242    .0380444
_Irace_eth_2 |   .9097815   .0784406    11.60   0.000     .7543147    1.065248
_Irace_eth_3 |   .0009256   .0951241     0.01   0.992    -.1876072    .1894584
_Irace_eth_4 |   .1253278   .1033056     1.21   0.228    -.0794205    .3300761
    indfmpir |  -.0561899   .0224183    -2.51   0.014    -.1006222   -.0117576
    ridageyr |   .0848647   .0027754    30.58   0.000      .079364    .0903655
       _cons |  -5.585293   .1804015   -30.96   0.000    -5.942843   -5.227743
------------------------------------------------------------------------------

Store full model ORs in a matrix for future:

data.0 <- c(-.0363006,-.0041059,.2927856,.2812502,-.0717828,-.0207673,-.1160899,-.0415222,-.0026754,.0110587,.0035981,-.019241)
m.0 <- matrix(data.0, nrow = 3, ncol = 4, byrow = TRUE)
m.0
           [,1]       [,2]       [,3]       [,4]
[1,] -0.0363006 -0.0041059  0.2927856  0.2812502
[2,] -0.0717828 -0.0207673 -0.1160899 -0.0415222
[3,] -0.0026754  0.0110587  0.0035981 -0.0192410
OR.0 <- exp(m.0)
OR.0
          [,1]      [,2]      [,3]      [,4]
[1,] 0.9643504 0.9959025 1.3401554 1.3247850
[2,] 0.9307330 0.9794469 0.8903952 0.9593280
[3,] 0.9973282 1.0111201 1.0036046 0.9809429

Deletion Cycle 1

As gender is a political variable, it will not be considered for removal.

Education

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr i.race_eth indfmpir ridageyr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,616
Number of PSUs     =       214                Population size   =  298,070,653
                                              Subpop. no. obs   =       19,446
                                              Subpop. size      =  133,050,061
                                              Design df         =          109
                                              F(  30,     80)   =        63.62
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |  -.0259609   .0577603    -0.45   0.654      -.14044    .0885181
      _IMJ_2 |   .0306447   .0950866     0.32   0.748    -.1578138    .2191032
      _IMJ_3 |   .3333996   .1935347     1.72   0.088    -.0501798     .716979
      _IMJ_4 |   .3272004   .1364079     2.40   0.018     .0568443    .5975564
        gndr |   .8226529   .0505841    16.26   0.000     .7223969    .9229089
_Irace_eth_2 |   .2382433   .0555762     4.29   0.000      .128093    .3483936
_Irace_eth_3 |   .0338704   .0723626     0.47   0.641      -.10955    .1772907
_Irace_eth_4 |  -.1184785    .072962    -1.62   0.107    -.2630869    .0261299
    indfmpir |  -.0193956   .0175245    -1.11   0.271    -.0541285    .0153374
    ridageyr |   .0278214   .0028775     9.67   0.000     .0221182    .0335246
       _cons |  -2.602814   .1288933   -20.19   0.000    -2.858276   -2.347352
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |  -.0580872   .0609093    -0.95   0.342    -.1788074     .062633
      _IMJ_2 |   .0137353   .1007186     0.14   0.892    -.1858857    .2133562
      _IMJ_3 |  -.0749648   .1900303    -0.39   0.694    -.4515987     .301669
      _IMJ_4 |    .004502   .1232108     0.04   0.971    -.2396978    .2487018
        gndr |   .9007623   .0502784    17.92   0.000     .8011122    1.000412
_Irace_eth_2 |   .3113405   .0696749     4.47   0.000     .1732471    .4494338
_Irace_eth_3 |  -.1445504   .0723536    -2.00   0.048    -.2879529   -.0011479
_Irace_eth_4 |  -.1335835   .0719351    -1.86   0.066    -.2761565    .0089896
    indfmpir |  -.0225824   .0150605    -1.50   0.137    -.0524318    .0072669
    ridageyr |   .0473137   .0024486    19.32   0.000     .0424607    .0521667
       _cons |  -3.152063   .1258539   -25.05   0.000    -3.401502   -2.902625
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |   .0114964    .074848     0.15   0.878    -.1368499    .1598427
      _IMJ_2 |   .0560183   .1198869     0.47   0.641    -.1815936    .2936302
      _IMJ_3 |   .0541847   .2459139     0.22   0.826    -.4332086     .541578
      _IMJ_4 |    .034036   .1746708     0.19   0.846    -.3121559    .3802279
        gndr |   1.037176    .069356    14.95   0.000     .8997147    1.174637
_Irace_eth_2 |   .9294336   .0778645    11.94   0.000     .7751087    1.083759
_Irace_eth_3 |   .0289344   .0920223     0.31   0.754    -.1534507    .2113195
_Irace_eth_4 |   .1064711   .1011617     1.05   0.295    -.0940281    .3069703
    indfmpir |  -.1023022   .0192978    -5.30   0.000    -.1405498   -.0640545
    ridageyr |     .08526   .0028421    30.00   0.000     .0796271    .0908929
       _cons |   -5.49039   .1445096   -37.99   0.000    -5.776804   -5.203977
------------------------------------------------------------------------------
data.E <- c(-.0259609,.0306447,.3333996,.3272004,-.0580872,.0137353,-.0749648,.004502,.0114964,.0560183,.0541847,.034036)
m.E <- matrix(data.E, nrow = 3, ncol = 4, byrow = TRUE)
#m.E
OR.E <- exp(m.E)
OR.E
          [,1]     [,2]      [,3]     [,4]
[1,] 0.9743732 1.031119 1.3957049 1.387079
[2,] 0.9435677 1.013830 0.9277761 1.004512
[3,] 1.0115627 1.057617 1.0556796 1.034622
D_OR <- (OR.0-OR.E)/OR.0
100*D_OR
          [,1]      [,2]      [,3]      [,4]
[1,] -1.039334 -3.536146 -4.145003 -4.702227
[2,] -1.378981 -3.510472 -4.198245 -4.709975
[3,] -1.427270 -4.598560 -5.188795 -5.472176
100*mean(abs(D_OR))
[1] 3.658932

Race/Ethnicity

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr i.EDUC_cat indfmpir ridageyr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,611
Number of PSUs     =       214                Population size   =  298,035,877
                                              Subpop. no. obs   =       19,441
                                              Subpop. size      =  133,015,285
                                              Design df         =          109
                                              F(  33,     77)   =        41.53
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |  -.0302624   .0577596    -0.52   0.601      -.14474    .0842153
      _IMJ_2 |   .0128038   .0943648     0.14   0.892     -.174224    .1998317
      _IMJ_3 |   .3171098   .1904571     1.66   0.099      -.06037    .6945896
      _IMJ_4 |   .2975759   .1347681     2.21   0.029     .0304699    .5646818
        gndr |   .8071392   .0503878    16.02   0.000     .7072722    .9070062
_IEDUC_cat_2 |   .1850557   .1147055     1.61   0.110    -.0422868    .4123982
_IEDUC_cat_3 |   .0171188   .1219637     0.14   0.889    -.2246092    .2588469
_IEDUC_cat_4 |   .0789331   .1191632     0.66   0.509    -.1572444    .3151107
_IEDUC_cat_5 |  -.2719444   .1168893    -2.33   0.022    -.5036152   -.0402737
    indfmpir |   .0150317    .019297     0.78   0.438    -.0232143    .0532776
    ridageyr |   .0277618   .0028977     9.58   0.000     .0220187     .033505
       _cons |  -2.645423   .1597037   -16.56   0.000    -2.961951   -2.328896
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |  -.0594694   .0603219    -0.99   0.326    -.1790253    .0600866
      _IMJ_2 |   .0109809   .0994986     0.11   0.912     -.186222    .2081838
      _IMJ_3 |  -.0724136   .1901414    -0.38   0.704    -.4492676    .3044405
      _IMJ_4 |  -.0099068   .1210962    -0.08   0.935    -.2499155     .230102
        gndr |   .8837196   .0512372    17.25   0.000     .7821692      .98527
_IEDUC_cat_2 |   .1735089   .1222237     1.42   0.159    -.0687345    .4157522
_IEDUC_cat_3 |   .2918334   .1103453     2.64   0.009     .0731327    .5105342
_IEDUC_cat_4 |   .2928367   .1127233     2.60   0.011     .0694229    .5162506
_IEDUC_cat_5 |  -.0640441   .1165805    -0.55   0.584    -.2951029    .1670147
    indfmpir |   .0044031   .0166787     0.26   0.792    -.0286537    .0374598
    ridageyr |   .0475489   .0023812    19.97   0.000     .0428295    .0522683
       _cons |  -3.390665   .1441988   -23.51   0.000    -3.676462   -3.104867
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |  -.0225278   .0728994    -0.31   0.758    -.1670121    .1219565
      _IMJ_2 |   .0359059   .1198813     0.30   0.765    -.2016949    .2735068
      _IMJ_3 |   .0292962   .2390438     0.12   0.903    -.4444809    .5030733
      _IMJ_4 |   -.029817   .1732218    -0.17   0.864     -.373137    .3135031
        gndr |   1.002373   .0692083    14.48   0.000      .865204    1.139541
_IEDUC_cat_2 |   .3068448    .147112     2.09   0.039     .0152737    .5984159
_IEDUC_cat_3 |   .2151521   .1359232     1.58   0.116    -.0542432    .4845474
_IEDUC_cat_4 |   .2627966   .1538556     1.71   0.090    -.0421401    .5677334
_IEDUC_cat_5 |  -.2173916   .1733188    -1.25   0.212    -.5609038    .1261207
    indfmpir |  -.0846118   .0218372    -3.87   0.000    -.1278925   -.0413311
    ridageyr |    .083982   .0028078    29.91   0.000     .0784171     .089547
       _cons |  -5.412274   .1606606   -33.69   0.000    -5.730698    -5.09385
------------------------------------------------------------------------------
data.R <- c(-.0302624, .0128038,.3171098,.2975759,-.0594694   ,.0109809, -.0724136,-.0099068,-.0225278,.0359059,.0292962,-.029817)
m.R <- matrix(data.R, nrow = 3, ncol = 4, byrow = TRUE)
#m.R
OR.R <- exp(m.R)
OR.R
          [,1]     [,2]      [,3]      [,4]
[1,] 0.9701909 1.012886 1.3731533 1.3465906
[2,] 0.9422644 1.011041 0.9301461 0.9901421
[3,] 0.9777241 1.036558 1.0297296 0.9706231
D_OR <- (OR.0-OR.R)/OR.0
100*D_OR
           [,1]      [,2]      [,3]      [,4]
[1,] -0.6056467 -1.705348 -2.462245 -1.645969
[2,] -1.2389522 -3.225755 -4.464415 -3.212048
[3,]  1.9656639 -2.515846 -2.603114  1.052027
100*mean(abs(D_OR))
[1] 2.224752

Income

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr i.EDUC_cat i.race_eth ridageyr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,182
Number of PSUs     =       214                Population size   =  306,497,065
                                              Subpop. no. obs   =       21,012
                                              Subpop. size      =  141,476,473
                                              Design df         =          109
                                              F(  39,     71)   =        45.05
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |  -.0343907   .0569046    -0.60   0.547    -.1471738    .0783925
      _IMJ_2 |   .0116518   .0944596     0.12   0.902    -.1755641    .1988676
      _IMJ_3 |   .3211071   .1864153     1.72   0.088    -.0483619    .6905761
      _IMJ_4 |   .2006977   .1335903     1.50   0.136    -.0640739    .4654693
        gndr |   .8042252   .0480668    16.73   0.000     .7089584    .8994921
_IEDUC_cat_2 |   .1444326   .1107856     1.30   0.195    -.0751408     .364006
_IEDUC_cat_3 |   .0392992   .1153619     0.34   0.734    -.1893442    .2679427
_IEDUC_cat_4 |   .0769147   .1179903     0.65   0.516    -.1569383    .3107676
_IEDUC_cat_5 |  -.2852786   .1151712    -2.48   0.015    -.5135442    -.057013
_Irace_eth_2 |   .1985129   .0590286     3.36   0.001     .0815202    .3155056
_Irace_eth_3 |  -.0486006   .0773644    -0.63   0.531    -.2019343    .1047332
_Irace_eth_4 |  -.1196564   .0739327    -1.62   0.108    -.2661886    .0268757
    ridageyr |   .0277068   .0028107     9.86   0.000     .0221362    .0332775
       _cons |  -2.593922   .1723039   -15.05   0.000    -2.935423   -2.252422
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |  -.0769204   .0594379    -1.29   0.198    -.1947245    .0408837
      _IMJ_2 |   .0046071   .1014352     0.05   0.964    -.1964341    .2056484
      _IMJ_3 |  -.1511093   .1818947    -0.83   0.408    -.5116186       .2094
      _IMJ_4 |   -.139263   .1208684    -1.15   0.252    -.3788203    .1002943
        gndr |   .8783655   .0498407    17.62   0.000     .7795828    .9771482
_IEDUC_cat_2 |   .0574299   .1098378     0.52   0.602     -.160265    .2751248
_IEDUC_cat_3 |   .1931061   .1034981     1.87   0.065    -.0120237     .398236
_IEDUC_cat_4 |   .1724506   .1046426     1.65   0.102    -.0349477    .3798489
_IEDUC_cat_5 |  -.1883123   .1077381    -1.75   0.083    -.4018457    .0252211
_Irace_eth_2 |   .3097918    .062821     4.93   0.000     .1852827    .4343009
_Irace_eth_3 |  -.1655951   .0728905    -2.27   0.025    -.3100616   -.0211285
_Irace_eth_4 |  -.1049987   .0693156    -1.51   0.133    -.2423799    .0323824
    ridageyr |   .0477974   .0024178    19.77   0.000     .0430053    .0525895
       _cons |  -3.262964   .1605002   -20.33   0.000     -3.58107   -2.944858
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |  -.0139708   .0753943    -0.19   0.853    -.1633999    .1354583
      _IMJ_2 |   .0652252   .1224475     0.53   0.595    -.1774618    .3079122
      _IMJ_3 |   .0515842   .2378352     0.22   0.829    -.4197974    .5229658
      _IMJ_4 |   .0095457   .1716543     0.06   0.956    -.3306675    .3497589
        gndr |   1.013071   .0682633    14.84   0.000     .8777756    1.148367
_IEDUC_cat_2 |   .0659118   .1435377     0.46   0.647    -.2185752    .3503988
_IEDUC_cat_3 |   .0104667   .1369104     0.08   0.939    -.2608853    .2818188
_IEDUC_cat_4 |  -.0044705   .1489166    -0.03   0.976    -.2996184    .2906774
_IEDUC_cat_5 |  -.5406974   .1599247    -3.38   0.001    -.8576629   -.2237319
_Irace_eth_2 |   .9608631   .0779787    12.32   0.000     .8063118    1.115414
_Irace_eth_3 |   .0401777   .0951914     0.42   0.674    -.1484887     .228844
_Irace_eth_4 |   .1529818   .0942471     1.62   0.107    -.0338128    .3397764
    ridageyr |    .085122   .0025912    32.85   0.000     .0799863    .0902578
       _cons |  -5.645881   .1837036   -30.73   0.000    -6.009975   -5.281786
------------------------------------------------------------------------------
data.I <- c(-.0343907,.0116518,.3211071,.2006977,-.0769204, .0046071,-.1511093,-.139263,-.0139708,.0652252, .0515842,.0095457)
m.I <- matrix(data.I, nrow = 3, ncol = 4, byrow = TRUE)
#m.I
OR.I <- exp(m.I)
OR.I
          [,1]     [,2]      [,3]      [,4]
[1,] 0.9661939 1.011720 1.3786532 1.2222552
[2,] 0.9259636 1.004618 0.8597537 0.8699992
[3,] 0.9861263 1.067399 1.0529378 1.0095914
D_OR <- (OR.0-OR.I)/OR.0
100*D_OR
           [,1]      [,2]      [,3]      [,4]
[1,] -0.1911725 -1.588251 -2.872637  7.739353
[2,]  0.5124425 -2.569907  3.441332  9.311606
[3,]  1.1231846 -5.566035 -4.915607 -2.920504
100*mean(abs(D_OR))
[1] 3.562669

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr i.EDUC_cat i.race_eth indfmpir
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,611
Number of PSUs     =       214                Population size   =  298,035,877
                                              Subpop. no. obs   =       19,441
                                              Subpop. size      =  133,015,285
                                              Design df         =          109
                                              F(  39,     71)   =        22.01
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |  -.0425472   .0571736    -0.74   0.458    -.1558633     .070769
      _IMJ_2 |  -.1292948   .0940237    -1.38   0.172    -.3156468    .0570571
      _IMJ_3 |    .165799   .1917079     0.86   0.389    -.2141599    .5457578
      _IMJ_4 |   .1728389   .1330092     1.30   0.197    -.0907809    .4364588
        gndr |   .7733103   .0509535    15.18   0.000      .672322    .8742985
_IEDUC_cat_2 |   .0648448   .1145152     0.57   0.572    -.1621206    .2918102
_IEDUC_cat_3 |   -.133651   .1232426    -1.08   0.281    -.3779139    .1106118
_IEDUC_cat_4 |  -.1168279   .1196253    -0.98   0.331    -.3539213    .1202656
_IEDUC_cat_5 |  -.4484931    .122007    -3.68   0.000     -.690307   -.2066793
_Irace_eth_2 |    .190842   .0561899     3.40   0.001     .0794756    .3022085
_Irace_eth_3 |   -.093504    .076247    -1.23   0.223    -.2446232    .0576151
_Irace_eth_4 |  -.1598845   .0710775    -2.25   0.026    -.3007578   -.0190112
    indfmpir |   .0627348   .0183474     3.42   0.001     .0263708    .0990989
       _cons |  -1.504913   .1160773   -12.96   0.000    -1.734974   -1.274851
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |  -.0772219   .0595323    -1.30   0.197     -.195213    .0407691
      _IMJ_2 |  -.2250079   .1003543    -2.24   0.027    -.4239067    -.026109
      _IMJ_3 |  -.3344453   .1839809    -1.82   0.072    -.6990895    .0301989
      _IMJ_4 |  -.2296752   .1278576    -1.80   0.075    -.4830848    .0237344
        gndr |   .8239349   .0503844    16.35   0.000     .7240746    .9237952
_IEDUC_cat_2 |  -.0635798   .1192945    -0.53   0.595    -.3000176    .1728581
_IEDUC_cat_3 |  -.0025006   .1121302    -0.02   0.982     -.224739    .2197379
_IEDUC_cat_4 |  -.0776092   .1155348    -0.67   0.503    -.3065954     .151377
_IEDUC_cat_5 |  -.4158074   .1178728    -3.53   0.001    -.6494274   -.1821873
_Irace_eth_2 |   .2402457   .0669965     3.59   0.001     .1074608    .3730306
_Irace_eth_3 |  -.2986046   .0707857    -4.22   0.000    -.4388995   -.1583097
_Irace_eth_4 |  -.2073988   .0708371    -2.93   0.004    -.3477957    -.067002
    indfmpir |   .0810614   .0176597     4.59   0.000     .0460605    .1160622
       _cons |  -1.318593    .130153   -10.13   0.000    -1.576552   -1.060634
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |  -.0113785   .0681792    -0.17   0.868    -.1465075    .1237504
      _IMJ_2 |  -.3217282   .1166797    -2.76   0.007    -.5529835   -.0904729
      _IMJ_3 |  -.3938527    .236956    -1.66   0.099    -.8634918    .0757864
      _IMJ_4 |  -.3773404   .1627376    -2.32   0.022     -.699881   -.0547998
        gndr |   .9040703   .0663395    13.63   0.000     .7725875    1.035553
_IEDUC_cat_2 |  -.0842657   .1438086    -0.59   0.559    -.3692897    .2007583
_IEDUC_cat_3 |  -.2293515   .1392577    -1.65   0.102    -.5053558    .0466528
_IEDUC_cat_4 |  -.3029697    .155296    -1.95   0.054    -.6107613    .0048219
_IEDUC_cat_5 |  -.7619093   .1732619    -4.40   0.000    -1.105309   -.4185098
_Irace_eth_2 |   .7950888   .0731534    10.87   0.000     .6501011    .9400764
_Irace_eth_3 |  -.3031253   .0865927    -3.50   0.001    -.4747492   -.1315014
_Irace_eth_4 |  -.0570139   .0988357    -0.58   0.565    -.2529031    .1388754
    indfmpir |   .0628632   .0223667     2.81   0.006     .0185332    .1071933
       _cons |  -1.842705   .1477248   -12.47   0.000     -2.13549   -1.549919
------------------------------------------------------------------------------
data.A <- c(-.0425472, -.1292948,.165799,.1728389,-.0772219,-.2250079,-.3344453,-.2296752,-.0113785,-.3217282,-.3938527,-.3773404)
m.A <- matrix(data.A, nrow = 3, ncol = 4, byrow = TRUE)
#m.A
OR.A <- exp(m.A)
OR.A
          [,1]      [,2]      [,3]      [,4]
[1,] 0.9583452 0.8787149 1.1803358 1.1886746
[2,] 0.9256844 0.7985099 0.7157350 0.7947917
[3,] 0.9886860 0.7248952 0.6744534 0.6856826
D_OR <- (OR.0-OR.A)/OR.0
100*D_OR
          [,1]     [,2]     [,3]     [,4]
[1,] 0.6227131 11.76698 11.92545 10.27415
[2,] 0.5424335 18.47338 19.61603 17.15121
[3,] 0.8665338 28.30770 32.79690 30.09964
100*mean(abs(D_OR))
[1] 15.20359

Result

Of the variables above, race has the least average change in OR; it will be excluded from the next cycle.

OR.1 <- OR.R

Deletion Cycle 2

Education

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr indfmpir ridageyr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,616
Number of PSUs     =       214                Population size   =  298,070,653
                                              Subpop. no. obs   =       19,446
                                              Subpop. size      =  133,050,061
                                              Design df         =          109
                                              F(  21,     89)   =        74.46
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |  -.0198477    .055943    -0.35   0.723     -.130725    .0910295
      _IMJ_2 |   .0475298   .0937731     0.51   0.613    -.1383254    .2333851
      _IMJ_3 |   .3575815    .190307     1.88   0.063    -.0196008    .7347639
      _IMJ_4 |   .3436251    .134084     2.56   0.012     .0778748    .6093753
        gndr |   .8161761   .0504202    16.19   0.000      .716245    .9161073
    indfmpir |  -.0249385   .0179398    -1.39   0.167    -.0604946    .0106175
    ridageyr |   .0278504   .0028397     9.81   0.000     .0222223    .0334786
       _cons |  -2.576898   .1167656   -22.07   0.000    -2.808323   -2.345472
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |  -.0386858   .0595199    -0.65   0.517    -.1566524    .0792807
      _IMJ_2 |   .0536644   .0994729     0.54   0.591    -.1434877    .2508166
      _IMJ_3 |  -.0218283   .1911706    -0.11   0.909    -.4007223    .3570656
      _IMJ_4 |   .0459204   .1212766     0.38   0.706    -.1944459    .2862867
        gndr |   .8864468   .0501944    17.66   0.000     .7869631    .9859304
    indfmpir |  -.0235913   .0144778    -1.63   0.106    -.0522858    .0051033
    ridageyr |    .047544   .0024258    19.60   0.000     .0427361     .052352
       _cons |  -3.163172   .1097447   -28.82   0.000    -3.380683   -2.945662
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |  -.0025774   .0729153    -0.04   0.972    -.1470932    .1419384
      _IMJ_2 |   .0900549   .1159895     0.78   0.439    -.1398326    .3199424
      _IMJ_3 |    .088156   .2390929     0.37   0.713    -.3857183    .5620304
      _IMJ_4 |   .0311304   .1756605     0.18   0.860    -.3170231    .3792839
        gndr |   1.008343   .0693471    14.54   0.000     .8708997    1.145787
    indfmpir |  -.1309781    .018752    -6.98   0.000    -.1681441   -.0938122
    ridageyr |   .0842744   .0028685    29.38   0.000     .0785891    .0899597
       _cons |  -5.199184   .1254282   -41.45   0.000    -5.447779    -4.95059
------------------------------------------------------------------------------
data.E <- c(-.0198477,.0475298,.3575815,.3436251,-.0386858,.0536644,-.0218283,.0459204, -.0025774,.0900549,.088156,.0311304)
m.E <- matrix(data.E, nrow = 3, ncol = 4, byrow = TRUE)
#m.E
OR.E <- exp(m.E)
OR.E
          [,1]     [,2]      [,3]     [,4]
[1,] 0.9803480 1.048677 1.4298671 1.410050
[2,] 0.9620529 1.055130 0.9784082 1.046991
[3,] 0.9974259 1.094234 1.0921585 1.031620
D_OR <- (OR.1-OR.E)/OR.1
100*D_OR
          [,1]      [,2]      [,3]      [,4]
[1,] -1.046912 -3.533599 -4.130184 -4.712593
[2,] -2.100108 -4.360754 -5.188659 -5.741495
[3,] -2.015074 -5.564188 -6.062653 -6.284301
100*mean(abs(D_OR))
[1] 4.228377

Income

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr i.EDUC_cat ridageyr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,182
Number of PSUs     =       214                Population size   =  306,497,065
                                              Subpop. no. obs   =       21,012
                                              Subpop. size      =  141,476,473
                                              Design df         =          109
                                              F(  30,     80)   =        50.60
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |  -.0237849   .0563017    -0.42   0.674     -.135373    .0878033
      _IMJ_2 |   .0333968   .0939846     0.36   0.723    -.1528777    .2196713
      _IMJ_3 |   .3524385   .1822094     1.93   0.056    -.0086946    .7135717
      _IMJ_4 |   .2235829   .1308588     1.71   0.090     -.035775    .4829408
        gndr |   .7963692   .0479554    16.61   0.000     .7013231    .8914153
_IEDUC_cat_2 |   .1876414   .1082255     1.73   0.086    -.0268581    .4021409
_IEDUC_cat_3 |   .0867666    .111372     0.78   0.438    -.1339691    .3075023
_IEDUC_cat_4 |   .1237756   .1114965     1.11   0.269    -.0972068    .3447579
_IEDUC_cat_5 |  -.2485626   .1090789    -2.28   0.025    -.4647534   -.0323718
    ridageyr |    .027839    .002753    10.11   0.000     .0223826    .0332953
       _cons |  -2.645468   .1508878   -17.53   0.000    -2.944522   -2.346413
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |   -.063084   .0574096    -1.10   0.274     -.176868    .0506999
      _IMJ_2 |   .0397107   .1003663     0.40   0.693    -.1592121    .2386335
      _IMJ_3 |  -.1019097   .1825296    -0.56   0.578    -.4636773     .259858
      _IMJ_4 |  -.1035826   .1190715    -0.87   0.386    -.3395784    .1324133
        gndr |   .8651325   .0496565    17.42   0.000     .7667148    .9635501
_IEDUC_cat_2 |   .1513488   .1086468     1.39   0.166    -.0639856    .3666831
_IEDUC_cat_3 |   .2991265   .1016349     2.94   0.004     .0976895    .5005635
_IEDUC_cat_4 |    .281089   .1006702     2.79   0.006      .081564     .480614
_IEDUC_cat_5 |  -.0905159   .1026045    -0.88   0.380    -.2938747    .1128429
    ridageyr |   .0480488    .002365    20.32   0.000     .0433615    .0527361
       _cons |  -3.372985   .1351686   -24.95   0.000    -3.640885   -3.105085
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |  -.0446323   .0731996    -0.61   0.543    -.1897115    .1004469
      _IMJ_2 |   .0943642   .1191925     0.79   0.430    -.1418715    .3305998
      _IMJ_3 |   .0842452   .2321425     0.36   0.717    -.3758538    .5443441
      _IMJ_4 |   .0039705   .1705128     0.02   0.981    -.3339803    .3419213
        gndr |   .9814749   .0680554    14.42   0.000     .8465914    1.116358
_IEDUC_cat_2 |   .1851024   .1401928     1.32   0.189    -.0927551    .4629599
_IEDUC_cat_3 |   .0827937   .1272784     0.65   0.517    -.1694679    .3350553
_IEDUC_cat_4 |   .0641297   .1383301     0.46   0.644    -.2100362    .3382955
_IEDUC_cat_5 |  -.5209059   .1483462    -3.51   0.001    -.8149233   -.2268885
    ridageyr |   .0832283   .0026016    31.99   0.000     .0780719    .0883846
       _cons |  -5.435086   .1587374   -34.24   0.000    -5.749698   -5.120474
------------------------------------------------------------------------------
data.I <-  c(-.0237849, .0333968,.3524385,.2235829,-.063084,.0397107,-.1019097,-.1035826,-.0446323, .0943642,.0842452,.0039705)
m.I <- matrix(data.I, nrow = 3, ncol = 4, byrow = TRUE)
#m.I
OR.I <- exp(m.I)
OR.I
          [,1]     [,2]      [,3]      [,4]
[1,] 0.9764957 1.033961 1.4225322 1.2505493
[2,] 0.9388646 1.040510 0.9031111 0.9016015
[3,] 0.9563491 1.098960 1.0878956 1.0039784
D_OR <- (OR.1-OR.I)/OR.1
100*D_OR
           [,1]      [,2]      [,3]      [,4]
[1,] -0.6498524 -2.080650 -3.596017  7.132181
[2,]  0.3608075 -2.914648  2.906534  8.942208
[3,]  2.1861986 -6.020077 -5.648673 -3.436478
100*mean(abs(D_OR))
[1] 3.82286

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr i.EDUC_cat indfmpir
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,611
Number of PSUs     =       214                Population size   =  298,035,877
                                              Subpop. no. obs   =       19,441
                                              Subpop. size      =  133,015,285
                                              Design df         =          109
                                              F(  30,     80)   =        21.35
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |  -.0251341   .0560716    -0.45   0.655    -.1362662     .085998
      _IMJ_2 |  -.1032825   .0932865    -1.11   0.271    -.2881733    .0816083
      _IMJ_3 |   .1999113   .1884477     1.06   0.291     -.173586    .5734085
      _IMJ_4 |   .1994269   .1314965     1.52   0.132    -.0611948    .4600486
        gndr |   .7642288   .0507867    15.05   0.000     .6635713    .8648863
_IEDUC_cat_2 |   .1211163   .1133522     1.07   0.288    -.1035442    .3457767
_IEDUC_cat_3 |   -.070009   .1206141    -0.58   0.563    -.3090623    .1690442
_IEDUC_cat_4 |   -.053951   .1147216    -0.47   0.639    -.2813256    .1734235
_IEDUC_cat_5 |   -.392255    .116271    -3.37   0.001    -.6227003   -.1618098
    indfmpir |   .0626615   .0187375     3.34   0.001     .0255243    .0997987
       _cons |  -1.581047   .1074383   -14.72   0.000    -1.793986   -1.368108
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |  -.0465438   .0585697    -0.79   0.429     -.162627    .0695395
      _IMJ_2 |  -.1791071   .0995009    -1.80   0.075    -.3763146    .0181004
      _IMJ_3 |  -.2729503   .1848875    -1.48   0.143    -.6393914    .0934907
      _IMJ_4 |  -.1801132   .1267181    -1.42   0.158    -.4312644     .071038
        gndr |    .808747   .0502412    16.10   0.000     .7091707    .9083234
_IEDUC_cat_2 |   .0630373   .1180616     0.53   0.594     -.170957    .2970316
_IEDUC_cat_3 |   .1471284   .1103672     1.33   0.185    -.0716159    .3658727
_IEDUC_cat_4 |   .0749667   .1117204     0.67   0.504    -.1464596    .2963929
_IEDUC_cat_5 |  -.2685009   .1145995    -2.34   0.021    -.4956334   -.0413685
    indfmpir |    .084636    .017027     4.97   0.000      .050889     .118383
       _cons |  -1.514393   .1152079   -13.14   0.000    -1.742732   -1.286055
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |   .0007932   .0667942     0.01   0.991    -.1315907    .1331771
      _IMJ_2 |  -.2554685   .1128074    -2.26   0.026    -.4790491   -.0318879
      _IMJ_3 |  -.3034009    .229149    -1.32   0.188    -.7575667    .1507649
      _IMJ_4 |  -.3234544    .160236    -2.02   0.046    -.6410369   -.0058718
        gndr |   .8728168   .0663742    13.15   0.000     .7412653    1.004368
_IEDUC_cat_2 |   .1296841   .1381046     0.94   0.350    -.1440347    .4034029
_IEDUC_cat_3 |  -.0051845   .1314302    -0.04   0.969    -.2656748    .2553058
_IEDUC_cat_4 |  -.0701819   .1452312    -0.48   0.630    -.3580255    .2176617
_IEDUC_cat_5 |  -.5451717    .162787    -3.35   0.001    -.8678103    -.222533
    indfmpir |   .0460368   .0216097     2.13   0.035      .003207    .0888666
       _cons |   -1.93226   .1260928   -15.32   0.000    -2.182172   -1.682348
------------------------------------------------------------------------------
data.A <-  c(-.0251341,-.1032825, .1999113,.1994269,-.0465438,-.1791071,-.2729503,-.1801132,.0007932,-.2554685,-.3034009,-.3234544)
m.A <- matrix(data.A, nrow = 3, ncol = 4, byrow = TRUE)
#m.A
OR.A <- exp(m.A)
OR.A
          [,1]      [,2]      [,3]      [,4]
[1,] 0.9751791 0.9018722 1.2212944 1.2207030
[2,] 0.9545228 0.8360164 0.7611306 0.8351757
[3,] 1.0007935 0.7745535 0.7383031 0.7236450
D_OR <- (OR.1-OR.A)/OR.1
100*D_OR
           [,1]     [,2]     [,3]      [,4]
[1,] -0.5141472 10.96016 11.05914  9.348618
[2,] -1.3009497 17.31136 18.17085 15.650930
[3,] -2.3595061 25.27641 28.30127 25.445322
100*mean(abs(D_OR))
[1] 13.80822

Result

Of the variables above, income has the least average change in OR; it will be excluded from the next cycle.

OR.2 <- OR.I

Deletion Cycle 3

c(111,222,333,444,222,222,333,444,333,222,333,444)

Education

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr  ridageyr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,190
Number of PSUs     =       214                Population size   =  306,545,053
                                              Subpop. no. obs   =       21,020
                                              Subpop. size      =  141,524,461
                                              Design df         =          109
                                              F(  18,     92)   =        93.07
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |  -.0227526   .0547765    -0.42   0.679    -.1313178    .0858126
      _IMJ_2 |   .0797134   .0935508     0.85   0.396    -.1057013     .265128
      _IMJ_3 |   .4072004    .181229     2.25   0.027     .0480105    .7663903
      _IMJ_4 |   .2865253   .1303029     2.20   0.030     .0282692    .5447813
        gndr |   .7982729   .0478785    16.67   0.000     .7033792    .8931666
    ridageyr |   .0265302   .0027076     9.80   0.000     .0211638    .0318966
       _cons |  -2.599187   .1109633   -23.42   0.000    -2.819113   -2.379262
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |  -.0499135   .0560524    -0.89   0.375    -.1610075    .0611805
      _IMJ_2 |   .0921278   .0995805     0.93   0.357    -.1052375    .2894932
      _IMJ_3 |  -.0401177   .1842881    -0.22   0.828    -.4053708    .3251354
      _IMJ_4 |  -.0355165    .119337    -0.30   0.767    -.2720385    .2010055
        gndr |   .8633234   .0488686    17.67   0.000     .7664675    .9601793
    ridageyr |   .0470443   .0023972    19.62   0.000     .0422931    .0517955
       _cons |  -3.200029   .1069927   -29.91   0.000    -3.412085   -2.987973
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |  -.0548756   .0730604    -0.75   0.454    -.1996788    .0899277
      _IMJ_2 |   .1690277   .1130569     1.50   0.138    -.0550474    .3931028
      _IMJ_3 |   .1638104   .2305652     0.71   0.479    -.2931623    .6207831
      _IMJ_4 |   .0852999   .1726447     0.49   0.622    -.2568764    .4274762
        gndr |   .9855432    .067661    14.57   0.000     .8514412    1.119645
    ridageyr |   .0818487   .0025662    31.90   0.000     .0767627    .0869348
       _cons |  -5.475991   .1225016   -44.70   0.000    -5.718785   -5.233197
------------------------------------------------------------------------------
data.E <- c(-.0227526,.0797134,.4072004,.2865253,-.0499135,.0921278,-.0401177,-.0355165,-.0548756,.1690277,.1638104,.0852999)
m.E <- matrix(data.E, nrow = 3, ncol = 4, byrow = TRUE)
#m.E
OR.E <- exp(m.E)
OR.E
          [,1]     [,2]      [,3]      [,4]
[1,] 0.9775043 1.082977 1.5026052 1.3317919
[2,] 0.9513117 1.096505 0.9606764 0.9651068
[3,] 0.9466029 1.184153 1.1779909 1.0890436
D_OR <- (OR.2-OR.E)/OR.2
100*D_OR
           [,1]      [,2]      [,3]      [,4]
[1,] -0.1032833 -4.740597 -5.628908 -6.496550
[2,] -1.3257613 -5.381520 -6.374106 -7.043606
[3,]  1.0191016 -7.752150 -8.281616 -8.472815
100*mean(abs(D_OR))
[1] 5.218334

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr i.EDUC_cat 
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,182
Number of PSUs     =       214                Population size   =  306,497,065
                                              Subpop. no. obs   =       21,012
                                              Subpop. size      =  141,476,473
                                              Design df         =          109
                                              F(  27,     83)   =        23.82
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |  -.0095226    .054527    -0.17   0.862    -.1175933    .0985482
      _IMJ_2 |   -.092097   .0923199    -1.00   0.321     -.275072    .0908781
      _IMJ_3 |   .2123234   .1799733     1.18   0.241    -.1443779    .5690246
      _IMJ_4 |   .1139486   .1261739     0.90   0.368     -.136124    .3640213
        gndr |   .7601668   .0481627    15.78   0.000     .6647099    .8556236
_IEDUC_cat_2 |   .1392047   .1065898     1.31   0.194    -.0720529    .3504622
_IEDUC_cat_3 |   .0484727   .1098658     0.44   0.660    -.1692778    .2662232
_IEDUC_cat_4 |   .0613196   .1087664     0.56   0.574    -.1542519    .2768911
_IEDUC_cat_5 |  -.2458461   .1098681    -2.24   0.027    -.4636011   -.0280911
       _cons |  -1.514204   .0966629   -15.66   0.000    -1.705786   -1.322621
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |  -.0340005   .0561847    -0.61   0.546    -.1453568    .0773557
      _IMJ_2 |  -.1676792   .0996981    -1.68   0.095    -.3652776    .0299192
      _IMJ_3 |  -.3426363   .1779154    -1.93   0.057    -.6952588    .0099862
      _IMJ_4 |  -.2926804   .1235392    -2.37   0.020     -.537531   -.0478298
        gndr |   .8006361   .0486398    16.46   0.000     .7042336    .8970387
_IEDUC_cat_2 |    .069679   .1049868     0.66   0.508    -.1384014    .2777594
_IEDUC_cat_3 |   .2403985   .1031933     2.33   0.022     .0358727    .4449242
_IEDUC_cat_4 |   .1850364   .1003522     1.84   0.068    -.0138584    .3839312
_IEDUC_cat_5 |  -.0856343   .1031875    -0.83   0.408    -.2901485      .11888
       _cons |  -1.367496   .1014487   -13.48   0.000    -1.568564   -1.166428
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |   .0039307   .0680466     0.06   0.954    -.1309356    .1387969
      _IMJ_2 |  -.2306821   .1127283    -2.05   0.043     -.454106   -.0072583
      _IMJ_3 |  -.3168202   .2276053    -1.39   0.167    -.7679264    .1342861
      _IMJ_4 |  -.3181186   .1572283    -2.02   0.045    -.6297401   -.0064972
        gndr |   .8692388   .0643211    13.51   0.000     .7417564    .9967213
_IEDUC_cat_2 |    .059932       .135     0.44   0.658    -.2076337    .3274976
_IEDUC_cat_3 |   .0129754   .1260003     0.10   0.918    -.2367531    .2627039
_IEDUC_cat_4 |  -.0606929   .1313257    -0.46   0.645    -.3209762    .1995904
_IEDUC_cat_5 |  -.5030832   .1425577    -3.53   0.001    -.7856279   -.2205385
       _cons |   -1.81337   .1220381   -14.86   0.000    -2.055246   -1.571495
------------------------------------------------------------------------------
data.A <-  c(-.0095226,-.092097,.2123234,.1139486,-.0340005,-.1676792,-.3426363,-.2926804,.0039307,-.2306821,-.3168202,-.3181186)
m.A <- matrix(data.A, nrow = 3, ncol = 4, byrow = TRUE)
#m.A
OR.A <- exp(m.A)
OR.A
          [,1]      [,2]      [,3]      [,4]
[1,] 0.9905226 0.9120167 1.2365477 1.1206945
[2,] 0.9665710 0.8456251 0.7098964 0.7462606
[3,] 1.0039384 0.7939918 0.7284617 0.7275165
D_OR <- (OR.2-OR.A)/OR.2
100*D_OR
          [,1]     [,2]     [,3]     [,4]
[1,] -1.436449 11.79388 13.07418 10.38382
[2,] -2.951056 18.72973 21.39435 17.22944
[3,] -4.976150 27.75061 33.03937 27.53664
100*mean(abs(D_OR))
[1] 15.85797

Result

Of the variables above, education has the least average change in OR; it will be excluded from the next cycle.

OR.3 <- OR.E

Deletion Cycle 4

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr i.EDUC_cat 
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,182
Number of PSUs     =       214                Population size   =  306,497,065
                                              Subpop. no. obs   =       21,012
                                              Subpop. size      =  141,476,473
                                              Design df         =          109
                                              F(  27,     83)   =        23.82
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |  -.0095226    .054527    -0.17   0.862    -.1175933    .0985482
      _IMJ_2 |   -.092097   .0923199    -1.00   0.321     -.275072    .0908781
      _IMJ_3 |   .2123234   .1799733     1.18   0.241    -.1443779    .5690246
      _IMJ_4 |   .1139486   .1261739     0.90   0.368     -.136124    .3640213
        gndr |   .7601668   .0481627    15.78   0.000     .6647099    .8556236
_IEDUC_cat_2 |   .1392047   .1065898     1.31   0.194    -.0720529    .3504622
_IEDUC_cat_3 |   .0484727   .1098658     0.44   0.660    -.1692778    .2662232
_IEDUC_cat_4 |   .0613196   .1087664     0.56   0.574    -.1542519    .2768911
_IEDUC_cat_5 |  -.2458461   .1098681    -2.24   0.027    -.4636011   -.0280911
       _cons |  -1.514204   .0966629   -15.66   0.000    -1.705786   -1.322621
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |  -.0340005   .0561847    -0.61   0.546    -.1453568    .0773557
      _IMJ_2 |  -.1676792   .0996981    -1.68   0.095    -.3652776    .0299192
      _IMJ_3 |  -.3426363   .1779154    -1.93   0.057    -.6952588    .0099862
      _IMJ_4 |  -.2926804   .1235392    -2.37   0.020     -.537531   -.0478298
        gndr |   .8006361   .0486398    16.46   0.000     .7042336    .8970387
_IEDUC_cat_2 |    .069679   .1049868     0.66   0.508    -.1384014    .2777594
_IEDUC_cat_3 |   .2403985   .1031933     2.33   0.022     .0358727    .4449242
_IEDUC_cat_4 |   .1850364   .1003522     1.84   0.068    -.0138584    .3839312
_IEDUC_cat_5 |  -.0856343   .1031875    -0.83   0.408    -.2901485      .11888
       _cons |  -1.367496   .1014487   -13.48   0.000    -1.568564   -1.166428
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |   .0039307   .0680466     0.06   0.954    -.1309356    .1387969
      _IMJ_2 |  -.2306821   .1127283    -2.05   0.043     -.454106   -.0072583
      _IMJ_3 |  -.3168202   .2276053    -1.39   0.167    -.7679264    .1342861
      _IMJ_4 |  -.3181186   .1572283    -2.02   0.045    -.6297401   -.0064972
        gndr |   .8692388   .0643211    13.51   0.000     .7417564    .9967213
_IEDUC_cat_2 |    .059932       .135     0.44   0.658    -.2076337    .3274976
_IEDUC_cat_3 |   .0129754   .1260003     0.10   0.918    -.2367531    .2627039
_IEDUC_cat_4 |  -.0606929   .1313257    -0.46   0.645    -.3209762    .1995904
_IEDUC_cat_5 |  -.5030832   .1425577    -3.53   0.001    -.7856279   -.2205385
       _cons |   -1.81337   .1220381   -14.86   0.000    -2.055246   -1.571495
------------------------------------------------------------------------------
data.A <-  c(-.0095226,-.092097,.2123234,.1139486,-.0340005,-.1676792,-.3426363,-.2926804,.0039307,-.2306821,-.3168202,-.3181186)
m.A <- matrix(data.A, nrow = 3, ncol = 4, byrow = TRUE)
#m.A
OR.A <- exp(m.A)
OR.A
          [,1]      [,2]      [,3]      [,4]
[1,] 0.9905226 0.9120167 1.2365477 1.1206945
[2,] 0.9665710 0.8456251 0.7098964 0.7462606
[3,] 1.0039384 0.7939918 0.7284617 0.7275165
D_OR <- (OR.3-OR.A)/OR.3
100*D_OR
          [,1]     [,2]     [,3]     [,4]
[1,] -1.331790 15.78612 17.70641 15.85063
[2,] -1.604029 22.87996 26.10453 22.67585
[3,] -6.056979 32.94854 38.16067 33.19675
100*mean(abs(D_OR))
[1] 19.52519

Result

Of the variables above, no average change of less than 10% is found. Therefore the model from deletion cycle 3 is the final model.

Mediation Analysis

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr  ridageyr, rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,190
Number of PSUs     =       214                Population size   =  306,545,053
                                              Subpop. no. obs   =       21,020
                                              Subpop. size      =  141,524,461
                                              Design df         =          109
                                              F(  18,     92)   =        93.07
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |   .9775043   .0535442    -0.42   0.679      .876939    1.089602
      _IMJ_2 |   1.082977   .1013133     0.85   0.396     .8996934    1.303598
      _IMJ_3 |   1.502605   .2723156     2.25   0.027     1.049182    2.151984
      _IMJ_4 |   1.331792   .1735363     2.20   0.030     1.028673    1.724231
        gndr |   2.221701   .1063717    16.67   0.000     2.020569    2.442853
    ridageyr |   1.026885   .0027804     9.80   0.000     1.021389    1.032411
       _cons |    .074334   .0082483   -23.42   0.000     .0596588    .0926189
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |   .9513117   .0533233    -0.89   0.375     .8512857    1.063091
      _IMJ_2 |   1.096505   .1091905     0.93   0.357     .9001107     1.33575
      _IMJ_3 |   .9606764   .1770412    -0.22   0.828     .6667296    1.384218
      _IMJ_4 |   .9651068   .1151729    -0.30   0.767     .7618249    1.222631
        gndr |   2.371028   .1158687    17.67   0.000      2.15215    2.612165
    ridageyr |   1.048168   .0025127    19.62   0.000       1.0432     1.05316
       _cons |    .040761   .0043611   -29.91   0.000     .0329724    .0503895
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |   .9466029   .0691592    -0.75   0.454     .8189937    1.094095
      _IMJ_2 |   1.184153   .1338767     1.50   0.138     .9464403    1.481571
      _IMJ_3 |   1.177991   .2716037     0.71   0.479     .7459011    1.860384
      _IMJ_4 |   1.089044   .1880177     0.49   0.622     .7734638    1.533383
        gndr |   2.679267    .181282    14.57   0.000     2.343021    3.063767
    ridageyr |   1.085292    .002785    31.90   0.000     1.079786    1.090826
       _cons |   .0041861   .0005128   -44.70   0.000     .0032837    .0053364
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.

Record baseline RRs:

RR0 <-  c(.9775043,1.082977,1.502605   ,1.331792   ,.9513117, 1.096505,.9606764,.9651068,.9466029,1.184153   ,1.177991   ,1.089044   )
RR0 <- matrix(RR0, nrow = 3, ncol = 4, byrow = TRUE)
RR0
          [,1]     [,2]      [,3]      [,4]
[1,] 0.9775043 1.082977 1.5026050 1.3317920
[2,] 0.9513117 1.096505 0.9606764 0.9651068
[3,] 0.9466029 1.184153 1.1779910 1.0890440

Smoking

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr  ridageyr SMK_cat, rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,139
Number of PSUs     =       214                Population size   =  306,306,164
                                              Subpop. no. obs   =       20,969
                                              Subpop. size      =  141,285,572
                                              Design df         =          109
                                              F(  21,     89)   =        77.93
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |   .9374249   .0571627    -1.06   0.292     .8307088     1.05785
      _IMJ_2 |   1.009098   .1064685     0.09   0.932     .8186839    1.243801
      _IMJ_3 |   1.383885   .2492299     1.80   0.074      .968462    1.977505
      _IMJ_4 |     1.2091   .1694016     1.36   0.178      .915936    1.596096
        gndr |   2.209352   .1054105    16.61   0.000     2.010006    2.428469
    ridageyr |   1.026261   .0027938     9.52   0.000     1.020739    1.031813
     SMK_cat |   1.068204   .0285846     2.47   0.015     1.013027    1.126387
       _cons |   .0746479   .0082886   -23.37   0.000     .0599021    .0930235
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |   .9450747    .057857    -0.92   0.358     .8370877    1.066992
      _IMJ_2 |   1.089875   .1133895     0.83   0.410     .8867969    1.339457
      _IMJ_3 |   .9564369   .1822314    -0.23   0.816     .6556241    1.395269
      _IMJ_4 |   .9534254   .1162203    -0.39   0.696     .7487942    1.213979
        gndr |   2.372321   .1171888    17.49   0.000     2.151065    2.616336
    ridageyr |   1.048037   .0025557    19.24   0.000     1.042984    1.053115
     SMK_cat |   1.006183   .0267834     0.23   0.817     .9544749    1.060692
       _cons |   .0409214   .0043775   -29.88   0.000     .0331034    .0505859
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |   .9076238   .0709204    -1.24   0.217     .7774053    1.059654
      _IMJ_2 |     1.0976   .1360313     0.75   0.454     .8585507    1.403209
      _IMJ_3 |   1.079162   .2554407     0.32   0.748     .6750609    1.725164
      _IMJ_4 |   .9788363   .1748177    -0.12   0.905     .6870383    1.394566
        gndr |   2.672076   .1811746    14.50   0.000     2.336075    3.056403
    ridageyr |   1.084611   .0027643    31.87   0.000     1.079146    1.090104
     SMK_cat |   1.072642   .0311241     2.42   0.017     1.012695    1.136137
       _cons |   .0041853    .000516   -44.42   0.000      .003278    .0053438
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
RR_S <-  c(.9374249,1.009098,1.383885   ,1.2091   ,.9450747,1.089875   ,.9564369,.9534254,.9076238,1.0976   ,1.079162,.9788363)
RR_S <- matrix(RR_S, nrow = 3, ncol = 4, byrow = TRUE)
RR_S
          [,1]     [,2]      [,3]      [,4]
[1,] 0.9374249 1.009098 1.3838850 1.2091000
[2,] 0.9450747 1.089875 0.9564369 0.9534254
[3,] 0.9076238 1.097600 1.0791620 0.9788363
D_RR <- (RR0-RR_S)/RR0
100*D_RR
          [,1]      [,2]      [,3]      [,4]
[1,] 4.1001763 6.8218439 7.9009454  9.212550
[2,] 0.6556211 0.6046484 0.4413036  1.210374
[3,] 4.1177879 7.3092751 8.3896227 10.119674
100*mean(abs(D_RR))
[1] 5.073652

Alcohol Use

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr  ridageyr AL_cat, rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,083
Number of PSUs     =       214                Population size   =  293,445,655
                                              Subpop. no. obs   =       18,913
                                              Subpop. size      =  128,425,062
                                              Design df         =          109
                                              F(  21,     89)   =        74.90
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |   .8969884    .049069    -1.99   0.049     .8048219    .9997096
      _IMJ_2 |   .9524878   .0859745    -0.54   0.591     .7964614     1.13908
      _IMJ_3 |   1.330507   .2528377     1.50   0.136     .9129489    1.939045
      _IMJ_4 |   1.121004   .1480906     0.86   0.389     .8627733    1.456525
        gndr |   2.361784   .1223464    16.59   0.000      2.13133    2.617156
    ridageyr |   1.030069   .0029541    10.33   0.000     1.024231    1.035941
      AL_cat |   1.173123   .0489471     3.83   0.000     1.080015    1.274259
       _cons |   .0613102   .0075926   -22.54   0.000     .0479663    .0783661
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |   .8872225   .0547347    -1.94   0.055       .78511    1.002616
      _IMJ_2 |   1.013692   .1019295     0.14   0.893     .8305284     1.23725
      _IMJ_3 |   .9123565   .1741833    -0.48   0.632     .6249314    1.331977
      _IMJ_4 |   .9089748   .1189676    -0.73   0.467     .7012857    1.178172
        gndr |    2.52572   .1296751    18.05   0.000     2.281352    2.796263
    ridageyr |   1.051498   .0027456    19.23   0.000      1.04607    1.056953
      AL_cat |    1.18147   .0490749     4.01   0.000     1.088101     1.28285
       _cons |   .0324597   .0037792   -29.44   0.000     .0257708    .0408847
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |   .8909407   .0680178    -1.51   0.133     .7658352    1.036483
      _IMJ_2 |   1.034994   .1271571     0.28   0.780     .8113101    1.320348
      _IMJ_3 |   .9619987   .2309185    -0.16   0.872     .5978028    1.548072
      _IMJ_4 |    .956476   .1759521    -0.24   0.809     .6642479    1.377266
        gndr |    2.85697   .2004106    14.96   0.000     2.486138    3.283115
    ridageyr |   1.090038   .0031562    29.77   0.000     1.083801    1.096312
      AL_cat |   1.342399   .0659263     6.00   0.000     1.217893    1.479633
       _cons |   .0028854   .0004211   -40.07   0.000     .0021606    .0038533
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
RR_A <-  c(.8969884,.9524878,1.330507   ,1.121004,.8872225,1.013692   ,.9123565,.9089748,.8909407,1.034994   ,.9619987,.956476)
RR_A <- matrix(RR_A, nrow = 3, ncol = 4, byrow = TRUE)
RR_A
          [,1]      [,2]      [,3]      [,4]
[1,] 0.8969884 0.9524878 1.3305070 1.1210040
[2,] 0.8872225 1.0136920 0.9123565 0.9089748
[3,] 0.8909407 1.0349940 0.9619987 0.9564760
D_RR <- (RR0-RR_A)/RR0
100*D_RR
         [,1]      [,2]      [,3]      [,4]
[1,] 8.236884 12.049120 11.453309 15.827396
[2,] 6.736930  7.552451  5.029779  5.816144
[3,] 5.880206 12.596261 18.335649 12.172878
100*mean(abs(D_RR))
[1] 10.14058

BMI

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr  ridageyr bmxbmi, rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       70,080
Number of PSUs     =       214                Population size   =  305,959,182
                                              Subpop. no. obs   =       20,910
                                              Subpop. size      =  140,938,589
                                              Design df         =          109
                                              F(  21,     89)   =        85.71
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |   .9840052   .0555589    -0.29   0.776      .879827    1.100519
      _IMJ_2 |   1.184859   .1127683     1.78   0.077     .9811707    1.430833
      _IMJ_3 |   1.642366   .2970089     2.74   0.007     1.147648    2.350343
      _IMJ_4 |    1.44872   .1941487     2.77   0.007     1.110788    1.889462
        gndr |   2.317385   .1114122    17.48   0.000     2.106764    2.549063
    ridageyr |   1.024799   .0028476     8.82   0.000     1.019171    1.030458
      bmxbmi |   1.063045   .0047525    13.68   0.000     1.053667    1.072506
       _cons |   .0134204   .0022718   -25.47   0.000     .0095952    .0187705
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |   .9687283   .0576282    -0.53   0.594     .8609873    1.089952
      _IMJ_2 |   1.231823   .1197262     2.15   0.034     1.015986    1.493513
      _IMJ_3 |   1.083761   .1985848     0.44   0.662     .7537215    1.558317
      _IMJ_4 |    1.08013    .133675     0.62   0.535     .8451823    1.380391
        gndr |   2.515005   .1295681    17.90   0.000      2.27088    2.785373
    ridageyr |    1.04622   .0025722    18.38   0.000     1.041135    1.051331
      bmxbmi |   1.077911   .0041242    19.61   0.000     1.069768    1.086116
       _cons |   .0047006   .0008167   -30.85   0.000     .0033312    .0066329
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |   .9675777   .0746639    -0.43   0.670      .830357    1.127475
      _IMJ_2 |   1.399027   .1572239     2.99   0.003     1.119678     1.74807
      _IMJ_3 |   1.400581   .3371062     1.40   0.164     .8692249    2.256754
      _IMJ_4 |   1.292246   .2213289     1.50   0.137     .9202788    1.814559
        gndr |   2.976748   .2048609    15.85   0.000     2.597194    3.411769
    ridageyr |   1.084163   .0029394    29.81   0.000     1.078353    1.090005
      bmxbmi |   1.104898   .0056372    19.55   0.000     1.093782    1.116128
       _cons |    .000206   .0000456   -38.37   0.000     .0001328    .0003193
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
RR_B <-  c(.9840052,1.184859   , 1.642366, 1.44872,.9687283,1.231823,1.083761,1.08013,.9675777,1.399027   ,1.400581,1.292246   )
RR_B <- matrix(RR_B, nrow = 3, ncol = 4, byrow = TRUE)
RR_B
          [,1]     [,2]     [,3]     [,4]
[1,] 0.9840052 1.184859 1.642366 1.448720
[2,] 0.9687283 1.231823 1.083761 1.080130
[3,] 0.9675777 1.399027 1.400581 1.292246
D_RR <- (RR0-RR_B)/RR0
100*D_RR
           [,1]       [,2]       [,3]       [,4]
[1,] -0.6650508  -9.407587  -9.301247  -8.779749
[2,] -1.8307985 -12.340847 -12.812285 -11.918184
[3,] -2.2157971 -18.145797 -18.895730 -18.658750
100*mean(abs(D_RR))
[1] 10.41432

Health Eating Index

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): mlogit BP_cat i.MJ gndr  ridageyr hei2015, rrr
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
(running mlogit on estimation sample)

Survey: Multinomial logistic regression

Number of strata   =       105                Number of obs     =       68,641
Number of PSUs     =       214                Population size   =  297,338,173
                                              Subpop. no. obs   =       19,471
                                              Subpop. size      =  132,317,580
                                              Design df         =          109
                                              F(  21,     89)   =        77.97
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat |        RRR   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Normal       |  (base outcome)
-------------+----------------------------------------------------------------
Elevated     |
      _IMJ_1 |   .9800469   .0512518    -0.39   0.701     .8835545    1.087077
      _IMJ_2 |   1.118512   .1096504     1.14   0.256     .9209979    1.358385
      _IMJ_3 |    1.56693    .303533     2.32   0.022      1.06736    2.300322
      _IMJ_4 |   1.350342   .1892399     2.14   0.034     1.022858    1.782675
        gndr |   2.180578   .1090479    15.59   0.000     1.974814    2.407781
    ridageyr |   1.029426   .0029668    10.06   0.000     1.023562    1.035322
     hei2015 |   .9926692    .002127    -3.43   0.001     .9884626    .9968938
       _cons |   .0995467   .0143168   -16.04   0.000      .074857    .1323796
-------------+----------------------------------------------------------------
Stage_1_HTN  |
      _IMJ_1 |   .9278013   .0543842    -1.28   0.204     .8260391      1.0421
      _IMJ_2 |    1.11908   .1175887     1.07   0.287     .9086909    1.378182
      _IMJ_3 |   .9262348   .1803803    -0.39   0.695     .6296399    1.362542
      _IMJ_4 |   .9696576   .1324793    -0.23   0.822     .7396353    1.271216
        gndr |   2.255614   .1099979    16.68   0.000     2.047806    2.484509
    ridageyr |   1.050978   .0028093    18.60   0.000     1.045425    1.056561
     hei2015 |   .9887869   .0020466    -5.45   0.000     .9847388    .9928516
       _cons |     .06764   .0093873   -19.41   0.000     .0513743    .0890558
-------------+----------------------------------------------------------------
Stage_2_HTN  |
      _IMJ_1 |   .9125074   .0685265    -1.22   0.225     .7863143    1.058953
      _IMJ_2 |   1.217197   .1472632     1.62   0.107     .9576832    1.547035
      _IMJ_3 |   1.012749    .246387     0.05   0.959     .6253053    1.640256
      _IMJ_4 |   1.010269   .1958838     0.05   0.958     .6879274    1.483651
        gndr |   2.530274   .1734823    13.54   0.000     2.208777    2.898568
    ridageyr |   1.089959    .003079    30.49   0.000     1.083874    1.096079
     hei2015 |   .9828323   .0023318    -7.30   0.000     .9782215    .9874648
       _cons |   .0089561   .0014716   -28.70   0.000     .0064667    .0124038
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.
RR_H <-  c(.9800469,1.118512,1.56693,1.350342,.9278013,1.11908   ,.9262348,.9696576,.9125074,1.217197   ,1.012749    ,1.010269)
RR_H <- matrix(RR_H, nrow = 3, ncol = 4, byrow = TRUE)
RR_H
          [,1]     [,2]      [,3]      [,4]
[1,] 0.9800469 1.118512 1.5669300 1.3503420
[2,] 0.9278013 1.119080 0.9262348 0.9696576
[3,] 0.9125074 1.217197 1.0127490 1.0102690
D_RR <- (RR0-RR_H)/RR0
100*D_RR
           [,1]      [,2]      [,3]       [,4]
[1,] -0.2601114 -3.281233 -4.280899 -1.3928601
[2,]  2.4713666 -2.058814  3.585141 -0.4715333
[3,]  3.6018799 -2.790518 14.027442  7.2334084
100*mean(abs(D_RR))
[1] 3.787934

Results

Model 1 will be the crude model, examining BP category only as a function of MJ use category; model 2 will include gender and age as confounders; and model 3 will include gender and age, as well as all mediators (tobacco use, alcohol use, diet, & BMI).