Model Building by Deletion

Full Model

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.EDUC_cat i.race_eth i.SMK_cat i.AL_cat bmxbmi hei2015 indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       65,338
Number of PSUs     =       214                Population size   =  277,846,206
                                              Subpop. no. obs   =       16,168
                                              Subpop. size      =  112,825,614
                                              Design df         =          109
                                              F(  22,     88)   =        87.87
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8815766   .0489931    -2.27   0.025     .7896305    .9842291
      _IMJ_2 |   1.032565   .0917559     0.36   0.719     .8658224     1.23142
      _IMJ_3 |   1.096764   .1848401     0.55   0.585     .7853223    1.531718
      _IMJ_4 |   1.131927   .1376864     1.02   0.311     .8894402    1.440522
        gndr |   2.681409    .126656    20.88   0.000     2.441773    2.944563
_IEDUC_cat_2 |   1.021784   .0997264     0.22   0.826     .8420715     1.23985
_IEDUC_cat_3 |   1.011383   .1033243     0.11   0.912     .8259984    1.238374
_IEDUC_cat_4 |   1.059466   .1145256     0.53   0.594     .8551477    1.312601
_IEDUC_cat_5 |   .8499164   .1017293    -1.36   0.177     .6704236    1.077465
_Irace_eth_2 |     1.4401   .0814052     6.45   0.000     1.287468    1.610828
_Irace_eth_3 |   .8429897   .0527579    -2.73   0.007     .7446504    .9543158
_Irace_eth_4 |   .9932813   .0663983    -0.10   0.920     .8700272    1.133997
 _ISMK_cat_1 |    1.07454    .076715     1.01   0.316     .9327606     1.23787
 _ISMK_cat_2 |    1.04475   .0855945     0.53   0.594     .8881618    1.228946
 _ISMK_cat_3 |   1.089722    .091812     1.02   0.310     .9221356    1.287766
 _ISMK_cat_4 |    1.17111   .1845349     1.00   0.318     .8569703    1.600404
  _IAL_cat_1 |   1.146538    .068109     2.30   0.023     1.019192    1.289796
  _IAL_cat_2 |     1.3602   .1040603     4.02   0.000     1.168831    1.582902
      bmxbmi |   1.073619   .0042742    17.84   0.000     1.065181    1.082124
     hei2015 |   .9975714   .0016953    -1.43   0.155     .9942171    1.000937
    indfmpir |   1.009014   .0163384     0.55   0.581     .9771455    1.041921
    ridageyr |   1.049165   .0026368    19.10   0.000     1.043952    1.054404
       _cons |   .0108648    .002171   -22.63   0.000     .0073119    .0161441
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.

Store full model ORs in a vector for future:

OR0 <- c(.8815766, 1.032565, 1.096764, 1.131927)

Deletion Cycle 1

Gender

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ EDUC_cat i.race_eth i.SMK_cat i.AL_cat bmxbmi hei2015 indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       65,338
Number of PSUs     =       214                Population size   =  277,846,206
                                              Subpop. no. obs   =       16,168
                                              Subpop. size      =  112,825,614
                                              Design df         =          109
                                              F(  18,     92)   =        55.97
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9582243     .05253    -0.78   0.438     .8595682    1.068204
      _IMJ_2 |   1.224804   .1026346     2.42   0.017      1.03738     1.44609
      _IMJ_3 |   1.374418   .2361775     1.85   0.067     .9777052    1.932102
      _IMJ_4 |   1.410263   .1665602     2.91   0.004     1.115937    1.782217
    EDUC_cat |   .9332385   .0232888    -2.77   0.007     .8882037    .9805566
_Irace_eth_2 |   1.392598   .0767511     6.01   0.000     1.248493    1.553335
_Irace_eth_3 |   .9038265   .0531653    -1.72   0.088      .804365    1.015587
_Irace_eth_4 |   1.032784   .0670995     0.50   0.621     .9080016    1.174715
 _ISMK_cat_1 |   1.152438   .0786405     2.08   0.040     1.006655    1.319332
 _ISMK_cat_2 |   1.058554   .0827041     0.73   0.468     .9066979    1.235843
 _ISMK_cat_3 |   1.094606   .0927182     1.07   0.288     .9254388    1.294696
 _ISMK_cat_4 |   1.294694   .1978487     1.69   0.094     .9563801    1.752685
  _IAL_cat_1 |   .9613666   .0543667    -0.70   0.487     .8594328     1.07539
  _IAL_cat_2 |   1.393904   .1055909     4.38   0.000     1.199579    1.619708
      bmxbmi |   1.069637   .0042041    17.13   0.000     1.061337    1.078002
     hei2015 |   .9934137   .0016878    -3.89   0.000      .990074    .9967646
    indfmpir |   1.034852   .0158163     2.24   0.027     1.003975    1.066679
    ridageyr |   1.046076   .0025847    18.23   0.000     1.040965    1.051211
       _cons |   .0311916   .0059282   -18.24   0.000     .0214014    .0454603
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_G <- c(.9582243,1.224804, 1.374418, 1.410263)
D_OR <- (OR0-OR_G)/OR0
100*D_OR
[1]  -8.694389 -18.617617 -25.315747 -24.589572
100*mean(abs(D_OR))
[1] 19.30433

Education

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.SMK_cat i.AL_cat bmxbmi hei2015 indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       65,341
Number of PSUs     =       214                Population size   =  277,875,985
                                              Subpop. no. obs   =       16,171
                                              Subpop. size      =  112,855,393
                                              Design df         =          109
                                              F(  18,     92)   =        95.65
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8771625   .0482202    -2.38   0.019      .786614    .9781342
      _IMJ_2 |   1.036842   .0916481     0.41   0.683       .87022    1.235368
      _IMJ_3 |   1.095188   .1854012     0.54   0.592     .7830211    1.531806
      _IMJ_4 |   1.138981    .139828     1.06   0.291     .8929863    1.452741
        gndr |   2.678317   .1248015    21.14   0.000     2.442043    2.937451
_Irace_eth_2 |   1.458263   .0821436     6.70   0.000     1.304216    1.630505
_Irace_eth_3 |   .8577796   .0493628    -2.67   0.009     .7653173    .9614128
_Irace_eth_4 |   .9905667   .0656405    -0.14   0.887     .8686506    1.129594
 _ISMK_cat_1 |   1.093364   .0781404     1.25   0.214     .9489606    1.259741
 _ISMK_cat_2 |   1.063089    .087611     0.74   0.459     .9028867    1.251717
 _ISMK_cat_3 |   1.123767   .0954879     1.37   0.172     .9495912    1.329891
 _ISMK_cat_4 |   1.208418   .1899114     1.20   0.231     .8849994    1.650028
  _IAL_cat_1 |   1.154161   .0681712     2.43   0.017     1.026656      1.2975
  _IAL_cat_2 |   1.384095   .1048864     4.29   0.000     1.191071    1.608399
      bmxbmi |   1.074622   .0042409    18.24   0.000      1.06625    1.083061
     hei2015 |   .9964676    .001727    -2.04   0.044     .9930507    .9998963
    indfmpir |   .9929596   .0146752    -0.48   0.634     .9642956    1.022476
    ridageyr |   1.049301   .0026479    19.07   0.000     1.044066    1.054562
       _cons |   .0112336   .0019519   -25.83   0.000     .0079609    .0158518
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_E <- c(.8771625,1.036842, 1.095188, 1.138981)
D_OR <- (OR0-OR_E)/OR0
100*D_OR
[1]  0.5007052 -0.4142112  0.1436955 -0.6231851
100*mean(abs(D_OR))
[1] 0.4204492

Race/Ethnicity

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.EDUC_cat i.SMK_cat i.AL_cat bmxbmi hei2015 indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       65,338
Number of PSUs     =       214                Population size   =  277,846,206
                                              Subpop. no. obs   =       16,168
                                              Subpop. size      =  112,825,614
                                              Design df         =          109
                                              F(  19,     91)   =        83.58
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8979156   .0498039    -1.94   0.055     .8044382    1.002255
      _IMJ_2 |   1.083719   .0956766     0.91   0.364     .9097553    1.290949
      _IMJ_3 |   1.166191   .1946209     0.92   0.359     .8377633    1.623372
      _IMJ_4 |   1.182622   .1436576     1.38   0.170     .9295794    1.504546
        gndr |   2.646719   .1246591    20.67   0.000      2.41083    2.905689
_IEDUC_cat_2 |   1.132162   .1044481     1.35   0.181     .9429721    1.359309
_IEDUC_cat_3 |   1.127397   .1056206     1.28   0.203     .9363467     1.35743
_IEDUC_cat_4 |   1.186111   .1187247     1.71   0.091     .9726732    1.446383
_IEDUC_cat_5 |   .9462565   .1038809    -0.50   0.616     .7612269    1.176261
 _ISMK_cat_1 |   1.046444   .0737098     0.64   0.521     .9100929    1.203224
 _ISMK_cat_2 |   1.052718   .0858522     0.63   0.530     .8956014    1.237398
 _ISMK_cat_3 |   1.076271   .0907295     0.87   0.385     .9106677    1.271989
 _ISMK_cat_4 |   1.142517   .1793433     0.85   0.398     .8370426    1.559472
  _IAL_cat_1 |   1.126049   .0663365     2.02   0.046     1.001957    1.265509
  _IAL_cat_2 |   1.299133   .0966399     3.52   0.001     1.121046     1.50551
      bmxbmi |   1.074555   .0042189    18.31   0.000     1.066226    1.082949
     hei2015 |   .9972133   .0016598    -1.68   0.096      .993929    1.000508
    indfmpir |   1.002173   .0158039     0.14   0.891     .9713344     1.03399
    ridageyr |   1.049381   .0026244    19.27   0.000     1.044193    1.054596
       _cons |   .0101883   .0019257   -24.27   0.000     .0070051     .014818
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_R <- c(.8979156,1.083719  , 1.166191  , 1.182622  )
D_OR <- (OR0-OR_R)/OR0
100*D_OR
[1] -1.853384 -4.954071 -6.330168 -4.478646
100*mean(abs(D_OR))
[1] 4.404067

Smoking

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.EDUC_cat i.race_eth i.AL_cat bmxbmi hei2015 indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       65,377
Number of PSUs     =       214                Population size   =  278,014,313
                                              Subpop. no. obs   =       16,207
                                              Subpop. size      =  112,993,721
                                              Design df         =          109
                                              F(  18,     92)   =        88.75
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9031076   .0466635    -1.97   0.051     .8152002    1.000495
      _IMJ_2 |   1.063007   .0847213     0.77   0.445     .9076828    1.244911
      _IMJ_3 |   1.132914   .1901917     0.74   0.459     .8122588    1.580154
      _IMJ_4 |   1.183061   .1381983     1.44   0.153     .9385519    1.491268
        gndr |    2.68605   .1264794    20.98   0.000     2.446714    2.948798
_IEDUC_cat_2 |   1.013884   .0993736     0.14   0.888     .8348777     1.23127
_IEDUC_cat_3 |    .998288   .1010875    -0.02   0.987     .8167606     1.22016
_IEDUC_cat_4 |   1.041148   .1120519     0.37   0.709     .8411525    1.288695
_IEDUC_cat_5 |   .8300564   .0980425    -1.58   0.118     .6568085    1.049002
_Irace_eth_2 |   1.417796   .0790596     6.26   0.000     1.269451    1.583476
_Irace_eth_3 |   .8302139   .0525504    -2.94   0.004     .7323292    .9411822
_Irace_eth_4 |   .9900997   .0660707    -0.15   0.882     .8674399    1.130104
  _IAL_cat_1 |   1.152408   .0676279     2.42   0.017     1.025873     1.29455
  _IAL_cat_2 |   1.377707   .1025994     4.30   0.000     1.188654     1.59683
      bmxbmi |   1.073522    .004223    18.03   0.000     1.065184    1.081924
     hei2015 |   .9973273   .0016704    -1.60   0.113     .9940221    1.000643
    indfmpir |   1.006869   .0160796     0.43   0.669     .9754988    1.039248
    ridageyr |   1.049785   .0025029    20.38   0.000     1.044836    1.054758
       _cons |   .0111743   .0022189   -22.63   0.000     .0075387    .0165632
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_S <- c(.9031076,1.063007  , 1.132914  , 1.183061  )
D_OR <- (OR0-OR_S)/OR0
100*D_OR
[1] -2.442329 -2.948192 -3.296060 -4.517429
100*mean(abs(D_OR))
[1] 3.301003

Alcohol

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.EDUC_cat i.race_eth i.SMK_cat bmxbmi hei2015 indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       67,099
Number of PSUs     =       214                Population size   =  289,046,209
                                              Subpop. no. obs   =       17,929
                                              Subpop. size      =  124,025,616
                                              Design df         =          109
                                              F(  20,     90)   =        85.95
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9256275   .0518896    -1.38   0.171     .8282915    1.034402
      _IMJ_2 |    1.09918   .0930872     1.12   0.267     .9293372    1.300064
      _IMJ_3 |   1.153825   .1910305     0.86   0.389     .8310565    1.601952
      _IMJ_4 |   1.200428   .1406226     1.56   0.122     .9517077    1.514148
        gndr |    2.51484    .107227    21.63   0.000     2.311052    2.736599
_IEDUC_cat_2 |   1.072559   .0974893     0.77   0.443     .8957428    1.284278
_IEDUC_cat_3 |   1.035709   .1005354     0.36   0.718      .854446    1.255425
_IEDUC_cat_4 |   1.068921   .1122761     0.63   0.527     .8680295    1.316306
_IEDUC_cat_5 |   .8549497   .0951837    -1.41   0.162     .6856622    1.066034
_Irace_eth_2 |   1.406647   .0752011     6.38   0.000     1.265226    1.563876
_Irace_eth_3 |   .8719623   .0544189    -2.20   0.030     .7705096    .9867733
_Irace_eth_4 |   1.029244   .0635018     0.47   0.641     .9107764    1.163121
 _ISMK_cat_1 |   1.084751   .0713369     1.24   0.219     .9521905    1.235767
 _ISMK_cat_2 |   1.095428   .0814272     1.23   0.223     .9453677    1.269309
 _ISMK_cat_3 |   1.134573   .0912615     1.57   0.119     .9673773    1.330666
 _ISMK_cat_4 |   1.315374    .189961     1.90   0.060      .987966    1.751283
      bmxbmi |   1.074691   .0040549    19.09   0.000     1.066685    1.082758
     hei2015 |   .9973574   .0016045    -1.64   0.103     .9941824    1.000543
    indfmpir |   1.014134   .0158421     0.90   0.371     .9832167    1.046024
    ridageyr |   1.046173   .0025035    18.86   0.000     1.041223    1.051147
       _cons |   .0124959   .0023468   -23.33   0.000     .0086122    .0181309
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_A <- c(.9256275,1.09918  , 1.153825  , 1.200428  )
D_OR <- (OR0-OR_A)/OR0
100*D_OR
[1] -4.996832 -6.451410 -5.202669 -6.051715
100*mean(abs(D_OR))
[1] 5.675656

BMI

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.EDUC_cat i.race_eth i.SMK_cat i.AL_cat hei2015 indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       65,407
Number of PSUs     =       214                Population size   =  278,229,824
                                              Subpop. no. obs   =       16,237
                                              Subpop. size      =  113,209,232
                                              Design df         =          109
                                              F(  21,     89)   =        68.99
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8701768   .0446819    -2.71   0.008     .7859759    .9633981
      _IMJ_2 |   .9422543   .0832826    -0.67   0.502     .7908403    1.122658
      _IMJ_3 |   .9894801   .1650398    -0.06   0.950     .7109475    1.377135
      _IMJ_4 |   1.010763   .1173273     0.09   0.927     .8030344    1.272226
        gndr |    2.50383   .1126104    20.41   0.000     2.290299     2.73727
_IEDUC_cat_2 |   1.060303   .1065529     0.58   0.561     .8688208    1.293988
_IEDUC_cat_3 |   1.079032   .1094426     0.75   0.455     .8825322    1.319283
_IEDUC_cat_4 |   1.147754   .1228018     1.29   0.200     .9284395    1.418874
_IEDUC_cat_5 |    .833549   .0987328    -1.54   0.127     .6591368    1.054112
_Irace_eth_2 |   1.594676   .0880809     8.45   0.000     1.429319    1.779164
_Irace_eth_3 |   .9125952   .0566575    -1.47   0.144     .8069357     1.03209
_Irace_eth_4 |   .9539848   .0603426    -0.74   0.458     .8415807    1.081402
 _ISMK_cat_1 |   1.105844   .0758094     1.47   0.145     .9653525    1.266781
 _ISMK_cat_2 |   .9644785    .075622    -0.46   0.646     .8256634    1.126632
 _ISMK_cat_3 |   .9265422   .0803802    -0.88   0.381     .7801748    1.100369
 _ISMK_cat_4 |   1.000964   .1574231     0.01   0.995     .7329018    1.367071
  _IAL_cat_1 |   1.143082   .0656398     2.33   0.022     1.020116     1.28087
  _IAL_cat_2 |   1.425331   .1082504     4.67   0.000     1.226149    1.656869
     hei2015 |    .992761   .0016733    -4.31   0.000     .9894502     .996083
    indfmpir |   .9939876   .0162023    -0.37   0.712     .9623884    1.026624
    ridageyr |   1.053851   .0025764    21.45   0.000     1.048757    1.058969
       _cons |   .0983399   .0150807   -15.12   0.000     .0725655     .133269
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_B <- c(.8701768,.9422543  , .9894801, 1.010763)
D_OR <- (OR0-OR_B)/OR0
100*D_OR
[1]  1.293115  8.746248  9.781858 10.704224
100*mean(abs(D_OR))
[1] 7.631361

HEI

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.EDUC_cat i.race_eth i.SMK_cat i.AL_cat bmxbmi indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       66,572
Number of PSUs     =       214                Population size   =  285,338,724
                                              Subpop. no. obs   =       17,402
                                              Subpop. size      =  120,318,132
                                              Design df         =          109
                                              F(  21,     89)   =        94.70
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8818887   .0489866    -2.26   0.026     .7899524    .9845248
      _IMJ_2 |    .991081   .0836449    -0.11   0.916     .8384231    1.171534
      _IMJ_3 |   1.092312   .1664816     0.58   0.564     .8075268    1.477531
      _IMJ_4 |   1.088388   .1145545     0.80   0.423     .8834615    1.340849
        gndr |   2.755303   .1257563    22.21   0.000     2.516999    3.016169
_IEDUC_cat_2 |   1.079326   .1068345     0.77   0.442     .8870592    1.313266
_IEDUC_cat_3 |   1.030982   .1069276     0.29   0.769     .8394176    1.266263
_IEDUC_cat_4 |   1.073103   .1148473     0.66   0.511     .8680004    1.326669
_IEDUC_cat_5 |    .852359   .1022948    -1.33   0.186     .6719234    1.081248
_Irace_eth_2 |   1.417995   .0802861     6.17   0.000     1.267474    1.586391
_Irace_eth_3 |   .8388233   .0503605    -2.93   0.004     .7447201    .9448175
_Irace_eth_4 |   .9683539   .0613356    -0.51   0.613     .8541098    1.097879
 _ISMK_cat_1 |   1.078263    .075399     1.08   0.284     .9387179    1.238553
 _ISMK_cat_2 |   1.054566   .0825712     0.68   0.499     .9029787    1.231601
 _ISMK_cat_3 |   1.065488   .0830843     0.81   0.418     .9129117    1.243565
 _ISMK_cat_4 |   1.178186    .186048     1.04   0.301     .8615711    1.611152
  _IAL_cat_1 |   1.173619   .0667838     2.81   0.006     1.048447    1.313735
  _IAL_cat_2 |   1.424292   .1067293     4.72   0.000     1.227716    1.652341
      bmxbmi |   1.074826   .0039839    19.47   0.000     1.066959    1.082751
    indfmpir |   1.011832   .0153658     0.77   0.440     .9818313    1.042749
    ridageyr |   1.047906   .0024491    20.02   0.000     1.043063    1.052771
       _cons |   .0093475   .0017815   -24.52   0.000     .0064069    .0136378
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_H <- c(.8818887,.991081  , 1.092312  , 1.088388)
D_OR <- (OR0-OR_H)/OR0
100*D_OR
[1] -0.03540248  4.01756790  0.40592142  3.84644946
100*mean(abs(D_OR))
[1] 2.076335

Income

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.EDUC_cat i.race_eth i.SMK_cat i.AL_cat bmxbmi hei2015 ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       66,566
Number of PSUs     =       214                Population size   =  284,467,242
                                              Subpop. no. obs   =       17,396
                                              Subpop. size      =  119,446,650
                                              Design df         =          109
                                              F(  21,     89)   =        85.25
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8842544   .0462907    -2.35   0.021     .7971069    .9809298
      _IMJ_2 |   1.072015   .0921257     0.81   0.420      .904128    1.271077
      _IMJ_3 |   1.123433   .1854692     0.70   0.482      .809922    1.558299
      _IMJ_4 |   1.065008   .1339647     0.50   0.618     .8300045     1.36655
        gndr |   2.644178   .1149913    22.36   0.000     2.425815    2.882197
_IEDUC_cat_2 |    1.00087   .0914281     0.01   0.992       .83512    1.199518
_IEDUC_cat_3 |   1.015437   .0990087     0.16   0.875     .8370013    1.231913
_IEDUC_cat_4 |   1.044839   .1077816     0.43   0.672     .8516413    1.281863
_IEDUC_cat_5 |   .8228114   .0922686    -1.74   0.085     .6588347      1.0276
_Irace_eth_2 |   1.435809    .079806     6.51   0.000     1.286037    1.603023
_Irace_eth_3 |   .8262702   .0518312    -3.04   0.003     .7296718    .9356568
_Irace_eth_4 |    .994878   .0635794    -0.08   0.936     .8765197    1.129219
 _ISMK_cat_1 |   1.082503   .0751607     1.14   0.256     .9433321    1.242205
 _ISMK_cat_2 |   1.031175   .0769629     0.41   0.682     .8893829    1.195573
 _ISMK_cat_3 |    1.07238    .089457     0.84   0.404     .9089608     1.26518
 _ISMK_cat_4 |   1.152865   .1856337     0.88   0.379     .8378759     1.58627
  _IAL_cat_1 |   1.149405   .0671543     2.38   0.019     1.023725    1.290515
  _IAL_cat_2 |   1.332649   .1002728     3.82   0.000      1.14802     1.54697
      bmxbmi |   1.072637   .0042944    17.51   0.000      1.06416    1.081183
     hei2015 |   .9973415   .0016272    -1.63   0.106     .9941215    1.000572
    ridageyr |   1.049524   .0025486    19.91   0.000     1.044485    1.054588
       _cons |   .0117072   .0022517   -23.12   0.000     .0079965    .0171398
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_I <- c(.8842544,1.072015, 1.123433 , 1.065008)
D_OR <- (OR0-OR_I)/OR0
100*D_OR
[1] -0.3037513 -3.8205827 -2.4316079  5.9119537
100*mean(abs(D_OR))
[1] 3.116974

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.EDUC_cat i.race_eth i.SMK_cat i.AL_cat bmxbmi hei2015 indfmpir, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.EDUC_cat        _IEDUC_cat_1-5      (naturally coded; _IEDUC_cat_1 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       65,338
Number of PSUs     =       214                Population size   =  277,846,206
                                              Subpop. no. obs   =       16,168
                                              Subpop. size      =  112,825,614
                                              Design df         =          109
                                              F(  21,     89)   =        63.18
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8669408   .0454519    -2.72   0.008      .781379    .9618718
      _IMJ_2 |   .8614717   .0723481    -1.78   0.079     .7293785    1.017488
      _IMJ_3 |   .8768699   .1437832    -0.80   0.425     .6335691    1.213602
      _IMJ_4 |   .9240537   .1095409    -0.67   0.507     .7305664    1.168785
        gndr |   2.515523   .1117382    20.77   0.000      2.30353    2.747026
_IEDUC_cat_2 |   .8907427   .0840783    -1.23   0.223     .7387616     1.07399
_IEDUC_cat_3 |   .8719048   .0899787    -1.33   0.187     .7106254    1.069787
_IEDUC_cat_4 |   .8306155   .0891551    -1.73   0.087     .6714437     1.02752
_IEDUC_cat_5 |   .6646448   .0794157    -3.42   0.001     .5244947    .8422443
_Irace_eth_2 |    1.40506   .0794537     6.01   0.000     1.256089    1.571698
_Irace_eth_3 |    .763815   .0461767    -4.46   0.000     .6775647    .8610444
_Irace_eth_4 |   .9125038   .0609525    -1.37   0.173     .7993531    1.041671
 _ISMK_cat_1 |   1.289172   .0840896     3.89   0.000     1.132832    1.467087
 _ISMK_cat_2 |   1.130211   .0922279     1.50   0.137     .9614346    1.328616
 _ISMK_cat_3 |   1.403253   .1131565     4.20   0.000     1.195984    1.646441
 _ISMK_cat_4 |   1.740422   .2694205     3.58   0.001     1.280583    2.365382
  _IAL_cat_1 |    1.01746   .0586169     0.30   0.764     .9076704    1.140529
  _IAL_cat_2 |   1.063923     .07671     0.86   0.392     .9222501     1.22736
      bmxbmi |   1.082661   .0041962    20.49   0.000     1.074376     1.09101
     hei2015 |   1.003978   .0016366     2.44   0.016      1.00074    1.007227
    indfmpir |   1.087211   .0180855     5.03   0.000     1.051951    1.123653
       _cons |   .0435125   .0076682   -17.79   0.000     .0306847    .0617029
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_A <- c(.8669408,.8614717, .8768699 , .9240537)
D_OR <- (OR0-OR_A)/OR0
100*D_OR
[1]  1.660185 16.569737 20.049354 18.364550
100*mean(abs(D_OR))
[1] 14.16096

Result

Of the variables above, education has the least average change in OR; it will be excluded from the next cycle.

OR1 <- OR_E

Deletion Cycle 2

Gender

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ i.race_eth i.SMK_cat i.AL_cat bmxbmi hei2015 indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       65,341
Number of PSUs     =       214                Population size   =  277,875,985
                                              Subpop. no. obs   =       16,171
                                              Subpop. size      =  112,855,393
                                              Design df         =          109
                                              F(  17,     93)   =        58.32
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9449547   .0515865    -1.04   0.302      .848049    1.052934
      _IMJ_2 |   1.213666    .101621     2.31   0.023     1.028082    1.432752
      _IMJ_3 |   1.360849   .2351932     1.78   0.077     .9661544    1.916784
      _IMJ_4 |   1.398623   .1649934     2.84   0.005     1.107027    1.767025
_Irace_eth_2 |   1.406654   .0773818     6.20   0.000     1.261351    1.568695
_Irace_eth_3 |   .9559936   .0528169    -0.81   0.417     .8568399    1.066621
_Irace_eth_4 |   1.038743   .0669479     0.59   0.557     .9141796    1.180279
 _ISMK_cat_1 |   1.170211   .0803576     2.29   0.024     1.021307    1.340824
 _ISMK_cat_2 |   1.080835   .0843341     1.00   0.321     .9259704    1.261599
 _ISMK_cat_3 |   1.134117   .0962235     1.48   0.141     .9585773    1.341801
 _ISMK_cat_4 |   1.354647   .2063949     1.99   0.049     1.001568    1.832195
  _IAL_cat_1 |   .9638547    .054503    -0.65   0.516     .8616649    1.078164
  _IAL_cat_2 |   1.416889    .106452     4.64   0.000     1.220862    1.644391
      bmxbmi |   1.069805   .0042012    17.18   0.000     1.061511    1.078164
     hei2015 |   .9926454   .0016929    -4.33   0.000     .9892958    .9960064
    indfmpir |   1.018571   .0142838     1.31   0.192     .9906502    1.047278
    ridageyr |   1.046604   .0025869    18.43   0.000      1.04149    1.051744
       _cons |     .02528   .0045095   -20.62   0.000     .0177515    .0360014
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_G <- c(.9449547,1.213666, 1.360849, 1.398623)
D_OR <- (OR1-OR_G)/OR1
100*D_OR
[1]  -7.728579 -17.054093 -24.257114 -22.795990
100*mean(abs(D_OR))
[1] 17.95894

Race/Ethnicity

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.SMK_cat i.AL_cat bmxbmi hei2015 indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       65,341
Number of PSUs     =       214                Population size   =  277,875,985
                                              Subpop. no. obs   =       16,171
                                              Subpop. size      =  112,855,393
                                              Design df         =          109
                                              F(  15,     95)   =        96.75
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8977321   .0490527    -1.97   0.051     .8055905    1.000413
      _IMJ_2 |   1.095606   .0960304     1.04   0.300      .920892    1.303468
      _IMJ_3 |   1.172163   .1964037     0.95   0.345     .8409344    1.633855
      _IMJ_4 |   1.197926   .1468047     1.47   0.143      .939604    1.527267
        gndr |   2.638453   .1225058    20.90   0.000     2.406488    2.892779
 _ISMK_cat_1 |   1.062349   .0749744     0.86   0.393     .9236771    1.221841
 _ISMK_cat_2 |   1.070008   .0878706     0.82   0.412     .9092858    1.259139
 _ISMK_cat_3 |   1.107035   .0943599     1.19   0.235      .934961    1.310779
 _ISMK_cat_4 |    1.17286   .1838268     1.02   0.311     .8596787    1.600132
  _IAL_cat_1 |   1.133488   .0662764     2.14   0.034     1.009456     1.27276
  _IAL_cat_2 |   1.318603   .0971664     3.75   0.000     1.139425    1.525957
      bmxbmi |   1.075716   .0041802    18.78   0.000     1.067463    1.084033
     hei2015 |   .9960574   .0016976    -2.32   0.022     .9926985    .9994276
    indfmpir |   .9877547   .0139641    -0.87   0.385     .9604624    1.015823
    ridageyr |   1.049395   .0026392    19.17   0.000     1.044177    1.054639
       _cons |   .0117069   .0019849   -26.23   0.000     .0083656    .0163827
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_R <- c(.8977321,1.095606  , 1.172163  , 1.197926)
D_OR <- (OR1-OR_R)/OR1
100*D_OR
[1] -2.345016 -5.667594 -7.028474 -5.175240
100*mean(abs(D_OR))
[1] 5.054081

Smoking

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.AL_cat bmxbmi hei2015 indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       65,380
Number of PSUs     =       214                Population size   =  278,044,093
                                              Subpop. no. obs   =       16,210
                                              Subpop. size      =  113,023,501
                                              Design df         =          109
                                              F(  14,     96)   =       109.11
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9037291   .0461187    -1.98   0.050     .8167939    .9999173
      _IMJ_2 |   1.077233    .085144     0.94   0.349     .9210342    1.259922
      _IMJ_3 |   1.143289   .1926983     0.79   0.429     .8186109     1.59674
      _IMJ_4 |   1.204507   .1426968     1.57   0.119     .9524368    1.523289
        gndr |   2.685962   .1246258    21.29   0.000     2.449975     2.94468
_Irace_eth_2 |   1.431848    .079548     6.46   0.000     1.282557    1.598517
_Irace_eth_3 |   .8458046   .0494443    -2.86   0.005     .7532716    .9497045
_Irace_eth_4 |   .9863017   .0650855    -0.21   0.835      .865384    1.124115
  _IAL_cat_1 |   1.162759   .0676393     2.59   0.011      1.03614    1.304852
  _IAL_cat_2 |   1.411063   .1031912     4.71   0.000     1.220672    1.631149
      bmxbmi |   1.074445   .0041845    18.44   0.000     1.066184    1.082771
     hei2015 |   .9960669   .0017033    -2.30   0.023     .9926967    .9994485
    indfmpir |   .9882983   .0141851    -0.82   0.414     .9605801    1.016816
    ridageyr |   1.050156   .0025138    20.44   0.000     1.045185     1.05515
       _cons |   .0114965   .0019968   -25.71   0.000     .0081481    .0162208
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_S <- c(.9037291,1.077233  , 1.143289  , 1.204507  )
D_OR <- (OR1-OR_S)/OR1
100*D_OR
[1] -3.028698 -3.895579 -4.392031 -5.753037
100*mean(abs(D_OR))
[1] 4.267336

Alcohol

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.SMK_cat bmxbmi hei2015 indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       67,103
Number of PSUs     =       214                Population size   =  289,078,692
                                              Subpop. no. obs   =       17,933
                                              Subpop. size      =  124,058,100
                                              Design df         =          109
                                              F(  16,     94)   =       104.72
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9226442   .0510834    -1.45   0.149     .8267559    1.029654
      _IMJ_2 |   1.109299    .093057     1.24   0.219     .9393801    1.309954
      _IMJ_3 |    1.15981   .1921749     0.89   0.373     .8351483    1.610684
      _IMJ_4 |   1.210831   .1433523     1.62   0.109     .9575842    1.531052
        gndr |   2.515814   .1058554    21.93   0.000     2.314522    2.734613
_Irace_eth_2 |   1.425579   .0763647     6.62   0.000     1.281984    1.585257
_Irace_eth_3 |   .8909232   .0524457    -1.96   0.052     .7928123    1.001175
_Irace_eth_4 |     1.0262   .0625756     0.42   0.672     .9093783    1.158028
 _ISMK_cat_1 |    1.10735   .0735046     1.54   0.127     .9708422    1.263051
 _ISMK_cat_2 |   1.122034   .0829262     1.56   0.122     .9691477    1.299039
 _ISMK_cat_3 |   1.179333   .0955432     2.04   0.044     1.004391    1.384747
 _ISMK_cat_4 |    1.36938   .1983625     2.17   0.032     1.027634    1.824777
      bmxbmi |   1.075826   .0040232    19.54   0.000     1.067881    1.083829
     hei2015 |   .9961584   .0016338    -2.35   0.021     .9929256    .9994017
    indfmpir |    .996072   .0139843    -0.28   0.780     .9687377    1.024178
    ridageyr |   1.046243   .0024923    18.98   0.000     1.041315    1.051194
       _cons |   .0132456   .0021673   -26.43   0.000      .009577    .0183194
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_A <- c(.9226442,1.109299  , 1.15981  , 1.210831)
D_OR <- (OR1-OR_A)/OR1
100*D_OR
[1] -5.185094 -6.988239 -5.900539 -6.308270
100*mean(abs(D_OR))
[1] 6.095536

BMI

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.SMK_cat i.AL_cat hei2015 indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       65,410
Number of PSUs     =       214                Population size   =  278,259,603
                                              Subpop. no. obs   =       16,240
                                              Subpop. size      =  113,239,011
                                              Design df         =          109
                                              F(  17,     93)   =        76.39
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8662722   .0440312    -2.82   0.006     .7832556    .9580877
      _IMJ_2 |   .9497693     .08311    -0.59   0.557     .7985409    1.129638
      _IMJ_3 |   .9908113    .166594    -0.05   0.956     .7100094    1.382668
      _IMJ_4 |   1.021799   .1196945     0.18   0.854     .8100939    1.288829
        gndr |   2.493749   .1104029    20.64   0.000     2.284259    2.722451
_Irace_eth_2 |   1.626859   .0897593     8.82   0.000      1.45834     1.81485
_Irace_eth_3 |   .9279654   .0533342    -1.30   0.196     .8280573    1.039928
_Irace_eth_4 |   .9466042   .0598549    -0.87   0.387     .8351063    1.072989
 _ISMK_cat_1 |   1.133889   .0772099     1.85   0.068     .9907381    1.297723
 _ISMK_cat_2 |    .987174   .0774507    -0.16   0.870     .8450088    1.153257
 _ISMK_cat_3 |   .9648922    .084234    -0.41   0.683     .8115881    1.147155
 _ISMK_cat_4 |   1.039882   .1633238     0.25   0.804     .7617168    1.419628
  _IAL_cat_1 |   1.152884   .0657033     2.50   0.014     1.029748    1.290745
  _IAL_cat_2 |   1.461211    .110791     5.00   0.000      1.25733    1.698153
     hei2015 |   .9910991   .0017063    -5.19   0.000      .987723    .9944868
    indfmpir |    .972498   .0146501    -1.85   0.067     .9438911    1.001972
    ridageyr |   1.054063   .0026083    21.28   0.000     1.048906    1.059245
       _cons |   .1129794    .013403   -18.38   0.000      .089307    .1429266
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_B <- c(.8662722,.9497693  , .9908113, 1.021799)
D_OR <- (OR1-OR_B)/OR1
100*D_OR
[1]  1.241537  8.397875  9.530482 10.288319
100*mean(abs(D_OR))
[1] 7.364554

HEI

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.SMK_cat i.AL_cat bmxbmi indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       66,576
Number of PSUs     =       214                Population size   =  285,370,796
                                              Subpop. no. obs   =       17,406
                                              Subpop. size      =  120,350,204
                                              Design df         =          109
                                              F(  17,     93)   =       106.50
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8764779   .0482782    -2.39   0.018     .7858301    .9775823
      _IMJ_2 |    .994088   .0836778    -0.07   0.944     .8413374    1.174572
      _IMJ_3 |   1.093146   .1676601     0.58   0.563     .8066037     1.48148
      _IMJ_4 |    1.09625   .1165248     0.86   0.389     .8880072    1.353328
        gndr |   2.761783   .1238839    22.65   0.000     2.526848    3.018563
_Irace_eth_2 |   1.440252   .0814983     6.45   0.000     1.287453    1.611185
_Irace_eth_3 |   .8533143   .0478238    -2.83   0.006     .7636038    .9535644
_Irace_eth_4 |   .9619244   .0603323    -0.62   0.537     .8494814    1.089251
 _ISMK_cat_1 |   1.098552   .0768462     1.34   0.182      .956332    1.261922
 _ISMK_cat_2 |   1.081986   .0851774     1.00   0.319     .9256786    1.264688
 _ISMK_cat_3 |   1.114768   .0881624     1.37   0.172     .9530394    1.303942
 _ISMK_cat_4 |   1.238726   .1934514     1.37   0.173     .9089729    1.688105
  _IAL_cat_1 |   1.183767   .0669218     2.98   0.004     1.058291     1.32412
  _IAL_cat_2 |    1.45586   .1082391     5.05   0.000      1.25639    1.686997
      bmxbmi |   1.076222   .0039639    19.94   0.000     1.068395    1.084107
    indfmpir |   .9924533   .0136198    -0.55   0.582      .965823    1.019818
    ridageyr |   1.047879    .002456    19.95   0.000     1.043022    1.052758
       _cons |   .0092636   .0014575   -29.76   0.000     .0067819    .0126534
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_H <- c(.8764779,.994088  , 1.093146  , 1.09625)
D_OR <- (OR1-OR_H)/OR1
100*D_OR
[1] 0.07804711 4.12348265 0.18645201 3.75168681
100*mean(abs(D_OR))
[1] 2.034917

Income

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.SMK_cat i.AL_cat bmxbmi hei2015 ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       66,571
Number of PSUs     =       214                Population size   =  284,502,347
                                              Subpop. no. obs   =       17,401
                                              Subpop. size      =  119,481,755
                                              Design df         =          109
                                              F(  17,     93)   =       101.78
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8729685    .045144    -2.63   0.010     .7879271    .9671883
      _IMJ_2 |   1.075685   .0916203     0.86   0.394     .9085966    1.273501
      _IMJ_3 |   1.122345   .1858211     0.70   0.487     .8083788    1.558252
      _IMJ_4 |   1.069243   .1363815     0.52   0.601     .8303997    1.376784
        gndr |   2.628376   .1128327    22.51   0.000     2.413994    2.861796
_Irace_eth_2 |   1.481415   .0799821     7.28   0.000      1.33108    1.648729
_Irace_eth_3 |   .8646855   .0473265    -2.66   0.009     .7757945    .9637617
_Irace_eth_4 |   1.002022   .0633285     0.03   0.975     .8840494    1.135736
 _ISMK_cat_1 |   1.109923   .0768381     1.51   0.135     .9676184    1.273156
 _ISMK_cat_2 |   1.067379   .0797966     0.87   0.385     .9203841    1.237851
 _ISMK_cat_3 |   1.133501   .0937399     1.52   0.133     .9621384    1.335383
 _ISMK_cat_4 |   1.219033   .1949738     1.24   0.218     .8878606    1.673733
  _IAL_cat_1 |   1.155174   .0672997     2.48   0.015     1.029201    1.296566
  _IAL_cat_2 |   1.364234   .1024378     4.14   0.000     1.175591    1.583148
      bmxbmi |   1.073958   .0042687    17.95   0.000     1.065531    1.082452
     hei2015 |   .9958633    .001621    -2.55   0.012     .9926557    .9990812
    ridageyr |   1.049204   .0025604    19.68   0.000     1.044142    1.054291
       _cons |   .0115847   .0019917   -25.93   0.000     .0082395     .016288
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_I <- c(.8729685,1.075685  , 1.122345  , 1.069243  )
D_OR <- (OR1-OR_I)/OR1
100*D_OR
[1]  0.4781326 -3.7462796 -2.4796656  6.1228414
100*mean(abs(D_OR))
[1] 3.20673

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.SMK_cat i.AL_cat bmxbmi hei2015 indfmpir, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       65,341
Number of PSUs     =       214                Population size   =  277,875,985
                                              Subpop. no. obs   =       16,171
                                              Subpop. size      =  112,855,393
                                              Design df         =          109
                                              F(  17,     93)   =        74.87
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |    .853067   .0442291    -3.07   0.003       .76976    .9453898
      _IMJ_2 |   .8540309   .0711063    -1.90   0.061     .7241144    1.007256
      _IMJ_3 |   .8667479   .1427867    -0.87   0.387     .6253064    1.201414
      _IMJ_4 |   .9192416   .1094749    -0.71   0.481     .7259718    1.163964
        gndr |   2.523541   .1105023    21.14   0.000     2.313764    2.752338
_Irace_eth_2 |   1.430207   .0808254     6.33   0.000     1.278659    1.599716
_Irace_eth_3 |   .8168245   .0450319    -3.67   0.000      .732276     .911135
_Irace_eth_4 |   .9139344   .0597596    -1.38   0.172     .8028465    1.040393
 _ISMK_cat_1 |   1.327567   .0865203     4.35   0.000       1.1667    1.510615
 _ISMK_cat_2 |   1.168177   .0963399     1.88   0.062     .9920226     1.37561
 _ISMK_cat_3 |   1.490468   .1194666     4.98   0.000     1.271539    1.747091
 _ISMK_cat_4 |   1.861055   .2844723     4.06   0.000     1.374636    2.519595
  _IAL_cat_1 |   1.021769   .0586326     0.38   0.708     .9119261    1.144843
  _IAL_cat_2 |   1.091413   .0778152     1.23   0.223     .9475869    1.257069
      bmxbmi |   1.083741   .0041662    20.92   0.000     1.075515    1.092029
     hei2015 |   1.002561   .0016744     1.53   0.129     .9992479    1.005885
    indfmpir |   1.060349   .0164394     3.78   0.000     1.028262    1.093437
       _cons |   .0380697   .0058129   -21.40   0.000     .0281288     .051524
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_A <- c(.853067,.8540309, .8667479 , .9192416)
D_OR <- (OR1-OR_A)/OR1
100*D_OR
[1]  2.746982 17.631529 20.858528 19.292631
100*mean(abs(D_OR))
[1] 15.13242

Result

Of the variables above, diet quality has the least average change in OR; it will be excluded from the next cycle.

OR2 <- OR_H

Deletion Cycle 3

Gender

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ i.race_eth i.SMK_cat i.AL_cat bmxbmi indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       66,576
Number of PSUs     =       214                Population size   =  285,370,796
                                              Subpop. no. obs   =       17,406
                                              Subpop. size      =  120,350,204
                                              Design df         =          109
                                              F(  16,     94)   =        71.48
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9492018    .051819    -0.95   0.342     .8518594    1.057668
      _IMJ_2 |   1.161927   .0927508     1.88   0.063     .9919024    1.361096
      _IMJ_3 |   1.387317   .2164246     2.10   0.038     1.018347    1.889975
      _IMJ_4 |   1.348905   .1349785     2.99   0.003     1.106241    1.644801
_Irace_eth_2 |   1.397354   .0771256     6.06   0.000     1.252558    1.558889
_Irace_eth_3 |   .9479215   .0510358    -0.99   0.323     .8519801    1.054667
_Irace_eth_4 |   .9967296   .0607052    -0.05   0.957     .8833921    1.124608
 _ISMK_cat_1 |    1.18276    .079924     2.48   0.015     1.034503    1.352264
 _ISMK_cat_2 |   1.119855   .0841424     1.51   0.135     .9649111     1.29968
 _ISMK_cat_3 |   1.170288   .0904471     2.03   0.044     1.004079    1.364009
 _ISMK_cat_4 |   1.442219   .2208336     2.39   0.018      1.06471    1.953579
  _IAL_cat_1 |   .9836928   .0538447    -0.30   0.764     .8825594    1.096415
  _IAL_cat_2 |   1.513681   .1112387     5.64   0.000     1.308514    1.751018
      bmxbmi |   1.072064   .0039013    19.12   0.000     1.064359    1.079824
    indfmpir |   1.014069   .0133154     1.06   0.290     .9880191    1.040806
    ridageyr |   1.044442   .0024029    18.90   0.000     1.039691    1.049215
       _cons |   .0176393   .0027965   -25.47   0.000     .0128832    .0241514
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_G <- c(.9492018,1.161927  , 1.387317  , 1.348905  )
D_OR <- (OR2-OR_G)/OR2
100*D_OR
[1]  -8.297288 -16.883717 -26.910495 -23.047206
100*mean(abs(D_OR))
[1] 18.78468

Race/Ethnicity

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.SMK_cat i.AL_cat bmxbmi indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       66,576
Number of PSUs     =       214                Population size   =  285,370,796
                                              Subpop. no. obs   =       17,406
                                              Subpop. size      =  120,350,204
                                              Design df         =          109
                                              F(  14,     96)   =       115.96
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8986689    .049341    -1.95   0.054     .8060096     1.00198
      _IMJ_2 |    1.04899   .0873047     0.57   0.567     .8894725    1.237114
      _IMJ_3 |   1.170444   .1774457     1.04   0.302      .866673    1.580688
      _IMJ_4 |   1.155208   .1226399     1.36   0.177     .9360086     1.42574
        gndr |   2.724206   .1219792    22.38   0.000     2.492864    2.977017
 _ISMK_cat_1 |    1.06849   .0737152     0.96   0.339     .9319374    1.225051
 _ISMK_cat_2 |   1.092603     .08546     1.13   0.260     .9356997    1.275816
 _ISMK_cat_3 |   1.106028   .0878788     1.27   0.207     .9448764    1.294664
 _ISMK_cat_4 |   1.211716   .1873303     1.24   0.217     .8919255    1.646165
  _IAL_cat_1 |   1.164775   .0654611     2.71   0.008     1.041998    1.302018
  _IAL_cat_2 |   1.387717    .100414     4.53   0.000     1.202312    1.601712
      bmxbmi |   1.077492   .0038978    20.63   0.000     1.069795    1.085246
    indfmpir |   .9878462   .0130237    -0.93   0.356      .962368    1.013999
    ridageyr |   1.047934   .0024505    20.02   0.000     1.043088    1.052802
       _cons |   .0093241   .0013861   -31.45   0.000     .0069446    .0125188
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_R <- c(.8986689,1.04899   , 1.170444   , 1.155208)
D_OR <- (OR2-OR_R)/OR2
100*D_OR
[1] -2.531838 -5.522851 -7.071151 -5.378153
100*mean(abs(D_OR))
[1] 5.125998

Smoking

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.AL_cat bmxbmi indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       66,620
Number of PSUs     =       214                Population size   =  285,567,745
                                              Subpop. no. obs   =       17,450
                                              Subpop. size      =  120,547,153
                                              Design df         =          109
                                              F(  13,     97)   =       131.12
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9047354    .045319    -2.00   0.048     .8192292    .9991662
      _IMJ_2 |   1.035177   .0775106     0.46   0.645     .8924091    1.200785
      _IMJ_3 |   1.148847   .1745335     0.91   0.363     .8501498    1.552491
      _IMJ_4 |   1.163604   .1188553     1.48   0.141     .9503503     1.42471
        gndr |   2.773064   .1236754    22.87   0.000     2.538464    3.029344
_Irace_eth_2 |   1.415445   .0780006     6.30   0.000     1.268994    1.578799
_Irace_eth_3 |   .8414017   .0478591    -3.04   0.003     .7516978    .9418105
_Irace_eth_4 |   .9543591   .0595813    -0.75   0.456     .8432846    1.080064
  _IAL_cat_1 |   1.195191   .0668721     3.19   0.002     1.069737    1.335357
  _IAL_cat_2 |   1.490981    .107293     5.55   0.000     1.292798    1.719544
      bmxbmi |   1.076134   .0039247    20.12   0.000     1.068384    1.083941
    indfmpir |   .9866729   .0131802    -1.00   0.317     .9608929    1.013144
    ridageyr |   1.048746   .0023481    21.26   0.000     1.044102     1.05341
       _cons |   .0092914   .0014542   -29.89   0.000     .0068133    .0126707
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_S <- c(.9047354,1.035177   , 1.148847   , 1.163604)
D_OR <- (OR2-OR_S)/OR2
100*D_OR
[1] -3.223983 -4.133336 -5.095477 -6.144036
100*mean(abs(D_OR))
[1] 4.649208

Alcohol

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.SMK_cat bmxbmi indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       68,473
Number of PSUs     =       214                Population size   =  297,340,157
                                              Subpop. no. obs   =       19,303
                                              Subpop. size      =  132,319,565
                                              Design df         =          109
                                              F(  15,     95)   =       115.73
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9256823   .0503621    -1.42   0.159     .8310596    1.031079
      _IMJ_2 |   1.084228   .0880271     1.00   0.321     .9230749    1.273516
      _IMJ_3 |   1.178992   .1789477     1.08   0.280     .8727001    1.592784
      _IMJ_4 |   1.192619   .1239348     1.70   0.093     .9706293     1.46538
        gndr |   2.592103   .1086216    22.73   0.000     2.385516     2.81658
_Irace_eth_2 |   1.400491   .0745261     6.33   0.000     1.260306     1.55627
_Irace_eth_3 |   .8861233   .0503294    -2.13   0.036     .7917817    .9917059
_Irace_eth_4 |   .9879913   .0561807    -0.21   0.832     .8826883    1.105857
 _ISMK_cat_1 |   1.122411    .072779     1.78   0.078     .9870499    1.276336
 _ISMK_cat_2 |   1.138906   .0802555     1.85   0.068       .99045    1.309613
 _ISMK_cat_3 |   1.187517   .0924153     2.21   0.029      1.01778    1.385563
 _ISMK_cat_4 |   1.357111   .2037521     2.03   0.044     1.007823    1.827455
      bmxbmi |   1.076899   .0037231    21.43   0.000     1.069545    1.084303
    indfmpir |   .9923301   .0127281    -0.60   0.550     .9674213     1.01788
    ridageyr |   1.044669   .0023148    19.72   0.000     1.040091    1.049267
       _cons |   .0112244   .0016797   -30.00   0.000     .0083436    .0150999
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_A <- c(.9256823,1.084228, 1.178992   , 1.192619  )
D_OR <- (OR2-OR_A)/OR2
100*D_OR
[1] -5.613878 -9.067608 -7.853114 -8.790787
100*mean(abs(D_OR))
[1] 7.831347

BMI

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.SMK_cat i.AL_cat indfmpir ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       66,658
Number of PSUs     =       214                Population size   =  285,825,605
                                              Subpop. no. obs   =       17,488
                                              Subpop. size      =  120,805,013
                                              Design df         =          109
                                              F(  16,     94)   =        83.62
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8641434   .0446314    -2.83   0.006     .7800622    .9572874
      _IMJ_2 |    .896223    .074509    -1.32   0.190     .7600734    1.056761
      _IMJ_3 |   .9647389   .1481579    -0.23   0.816     .7115749    1.307973
      _IMJ_4 |   .9823915   .0987493    -0.18   0.860      .804937    1.198967
        gndr |   2.594114   .1108099    22.32   0.000     2.383532      2.8233
_Irace_eth_2 |   1.623961    .091343     8.62   0.000     1.452649    1.815477
_Irace_eth_3 |   .9250797   .0520795    -1.38   0.169     .8274102    1.034278
_Irace_eth_4 |    .905103   .0545557    -1.65   0.101     .8031844    1.019954
 _ISMK_cat_1 |   1.145004   .0759168     2.04   0.044     1.004006    1.305802
 _ISMK_cat_2 |   1.018341   .0756149     0.24   0.807      .878981    1.179797
 _ISMK_cat_3 |   1.005552   .0799558     0.07   0.945     .8589382    1.177191
 _ISMK_cat_4 |    1.11624   .1701426     0.72   0.472     .8251951    1.509935
  _IAL_cat_1 |    1.18708   .0655518     3.11   0.002     1.064016    1.324378
  _IAL_cat_2 |   1.535836   .1146836     5.75   0.000     1.324556    1.780816
    indfmpir |   .9684146   .0136625    -2.27   0.025     .9417111    .9958754
    ridageyr |   1.051582   .0024006    22.03   0.000     1.046834     1.05635
       _cons |   .0763417   .0083309   -23.57   0.000     .0614936    .0947749
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_B <- c(.8641434,.896223  , .9647389, .9823915)
D_OR <- (OR2-OR_B)/OR2
100*D_OR
[1]  1.407280  9.844702 11.746565 10.386180
100*mean(abs(D_OR))
[1] 8.346182

Income

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.SMK_cat i.AL_cat bmxbmi ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       67,941
Number of PSUs     =       214                Population size   =  292,707,116
                                              Subpop. no. obs   =       18,771
                                              Subpop. size      =  127,686,524
                                              Design df         =          109
                                              F(  16,     94)   =       114.73
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8715256     .04498    -2.66   0.009     .7867847    .9653936
      _IMJ_2 |   1.018565   .0834913     0.22   0.823     .8658306    1.198242
      _IMJ_3 |   1.106916   .1700224     0.66   0.510      .816398    1.500814
      _IMJ_4 |   1.007019   .1118922     0.06   0.950     .8079734      1.2551
        gndr |   2.713086   .1118222    24.22   0.000     2.500269    2.944018
_Irace_eth_2 |   1.464051   .0793199     7.04   0.000     1.314988    1.630011
_Irace_eth_3 |   .8600189   .0453991    -2.86   0.005     .7745863    .9548741
_Irace_eth_4 |   .9654443   .0573445    -0.59   0.555     .8582242     1.08606
 _ISMK_cat_1 |   1.110762   .0750171     1.56   0.123     .9716023    1.269854
 _ISMK_cat_2 |   1.088447   .0786404     1.17   0.243     .9432294    1.256021
 _ISMK_cat_3 |   1.137615   .0896678     1.64   0.105     .9730824    1.329967
 _ISMK_cat_4 |   1.228665   .2001034     1.26   0.209     .8897095    1.696753
  _IAL_cat_1 |   1.187824    .065848     3.10   0.002      1.06423    1.325773
  _IAL_cat_2 |   1.430815   .1039518     4.93   0.000     1.238932    1.652416
      bmxbmi |   1.075684   .0040319    19.46   0.000     1.067722    1.083704
    ridageyr |   1.047528   .0023701    20.52   0.000     1.042841    1.052236
       _cons |   .0093341   .0014287   -30.54   0.000     .0068916    .0126423
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_I <- c(.8715256,1.018565   , 1.106916    , 1.007019   )
D_OR <- (OR2-OR_I)/OR2
100*D_OR
[1]  0.5650228 -2.4622569 -1.2596671  8.1396579
100*mean(abs(D_OR))
[1] 3.106651

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.SMK_cat i.AL_cat bmxbmi indfmpir, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       66,576
Number of PSUs     =       214                Population size   =  285,370,796
                                              Subpop. no. obs   =       17,406
                                              Subpop. size      =  120,350,204
                                              Design df         =          109
                                              F(  16,     94)   =        80.10
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8509172   .0436453    -3.15   0.002     .7686654    .9419706
      _IMJ_2 |    .829701   .0675252    -2.29   0.024     .7061044    .9749319
      _IMJ_3 |   .8584919   .1291169    -1.01   0.313     .6372042    1.156628
      _IMJ_4 |   .8800438   .0928769    -1.21   0.229     .7139418     1.08479
        gndr |   2.566588    .108348    22.33   0.000     2.360583    2.790569
_Irace_eth_2 |   1.408094   .0795242     6.06   0.000     1.258981    1.574868
_Irace_eth_3 |   .8210774   .0448496    -3.61   0.000     .7368296     .914958
_Irace_eth_4 |   .9093024   .0560238    -1.54   0.126     .8047769    1.027404
 _ISMK_cat_1 |   1.335107   .0845307     4.56   0.000     1.177656     1.51361
 _ISMK_cat_2 |   1.166527   .0924424     1.94   0.055     .9969727    1.364917
 _ISMK_cat_3 |    1.41749   .1060534     4.66   0.000     1.222138    1.644069
 _ISMK_cat_4 |   1.803394   .2738536     3.88   0.000     1.334691    2.436692
  _IAL_cat_1 |   1.047061   .0564944     0.85   0.396     .9408702    1.165237
  _IAL_cat_2 |   1.147178   .0807064     1.95   0.054     .9978714    1.318824
      bmxbmi |   1.083186   .0038972    22.21   0.000      1.07549    1.090938
    indfmpir |   1.064385   .0156055     4.26   0.000       1.0339    1.095768
       _cons |   .0432163   .0055442   -24.49   0.000     .0335136    .0557281
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_A <- c(.8509172,.829701, .8584919 , .8800438)
D_OR <- (OR2-OR_A)/OR2
100*D_OR
[1]  2.916297 16.536464 21.465943 19.722344
100*mean(abs(D_OR))
[1] 15.16026

Result

Of the variables above, Income has the least average change in OR; it will be excluded from the next cycle.

OR3 <- OR_I

Deletion Cycle 4

Gender

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ i.race_eth i.SMK_cat i.AL_cat bmxbmi ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       67,941
Number of PSUs     =       214                Population size   =  292,707,116
                                              Subpop. no. obs   =       18,771
                                              Subpop. size      =  127,686,524
                                              Design df         =          109
                                              F(  15,     95)   =        75.16
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |     .95096   .0491342    -0.97   0.333     .8583977    1.053503
      _IMJ_2 |   1.191889   .0931612     2.25   0.027     1.020838    1.391602
      _IMJ_3 |   1.411954   .2212835     2.20   0.030     1.034955    1.926282
      _IMJ_4 |   1.240874   .1296602     2.07   0.041     1.008756    1.526403
_Irace_eth_2 |   1.395836    .074125     6.28   0.000      1.25639    1.550759
_Irace_eth_3 |    .926874   .0463654    -1.52   0.132     .8393878    1.023479
_Irace_eth_4 |   .9884425   .0569071    -0.20   0.840     .8818514    1.107917
 _ISMK_cat_1 |   1.194937   .0781379     2.72   0.008     1.049686    1.360287
 _ISMK_cat_2 |   1.108693   .0779317     1.47   0.145     .9645112    1.274428
 _ISMK_cat_3 |   1.167537   .0882059     2.05   0.043     1.005175    1.356126
 _ISMK_cat_4 |   1.397069   .2201642     2.12   0.036     1.022283    1.909258
  _IAL_cat_1 |   .9934992   .0528482    -0.12   0.903     .8940883    1.103963
  _IAL_cat_2 |   1.485767   .1061166     5.54   0.000     1.289655    1.711701
      bmxbmi |   1.071503   .0039498    18.74   0.000     1.063703     1.07936
    ridageyr |   1.044723   .0023077    19.81   0.000     1.040159    1.049307
       _cons |   .0185177   .0028224   -26.17   0.000     .0136897    .0250484
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_G <- c(.95096,1.191889  , 1.411954   , 1.240874   )
D_OR <- (OR3-OR_G)/OR3
100*D_OR
[1]  -9.114408 -17.016489 -27.557466 -23.222501
100*mean(abs(D_OR))
[1] 19.22772

Race/Ethnicity

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.SMK_cat i.AL_cat bmxbmi ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       67,941
Number of PSUs     =       214                Population size   =  292,707,116
                                              Subpop. no. obs   =       18,771
                                              Subpop. size      =  127,686,524
                                              Design df         =          109
                                              F(  13,     97)   =       130.38
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8925672   .0457181    -2.22   0.029      .806403    .9879381
      _IMJ_2 |   1.076866   .0872889     0.91   0.363     .9170437    1.264542
      _IMJ_3 |   1.188852   .1795897     1.15   0.255     .8812525    1.603818
      _IMJ_4 |   1.063824   .1165876     0.56   0.574     .8561248    1.321913
        gndr |   2.673077   .1099395    23.91   0.000     2.463825    2.900101
 _ISMK_cat_1 |   1.079423   .0718895     1.15   0.254     .9459439    1.231738
 _ISMK_cat_2 |   1.105892   .0794385     1.40   0.164     .9591421    1.275096
 _ISMK_cat_3 |   1.132822   .0901003     1.57   0.120     .9676095    1.326242
 _ISMK_cat_4 |   1.203511    .194639     1.15   0.255     .8734607    1.658277
  _IAL_cat_1 |   1.167431   .0643886     2.81   0.006     1.046542    1.302283
  _IAL_cat_2 |   1.363704   .0971483     4.35   0.000     1.184135    1.570505
      bmxbmi |    1.07716   .0039715    20.16   0.000     1.069317     1.08506
    ridageyr |   1.047415   .0023575    20.58   0.000     1.042752    1.052098
       _cons |   .0093027   .0013535   -32.15   0.000     .0069723    .0124122
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_R <- c(.8925672,1.076866     , 1.188852     , 1.063824  )
D_OR <- (OR3-OR_R)/OR3
100*D_OR
[1] -2.414341 -5.723837 -7.402188 -5.640906
100*mean(abs(D_OR))
[1] 5.295318

Smoking

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.AL_cat bmxbmi ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       67,991
Number of PSUs     =       214                Population size   =  292,944,878
                                              Subpop. no. obs   =       18,821
                                              Subpop. size      =  127,924,286
                                              Design df         =          109
                                              F(  12,     98)   =       145.02
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9008402   .0427715    -2.20   0.030     .8199349    .9897288
      _IMJ_2 |   1.065697   .0775084     0.87   0.384     .9226362     1.23094
      _IMJ_3 |   1.171644    .178301     1.04   0.300     .8665739    1.584112
      _IMJ_4 |   1.077879   .1163135     0.69   0.489     .8703338    1.334916
        gndr |   2.722419   .1117439    24.40   0.000     2.509715     2.95315
_Irace_eth_2 |   1.445952   .0762632     6.99   0.000     1.302433    1.605286
_Irace_eth_3 |   .8539244   .0459672    -2.93   0.004     .7675106    .9500674
_Irace_eth_4 |   .9601631   .0567304    -0.69   0.493     .8540591    1.079449
  _IAL_cat_1 |    1.19993   .0660538     3.31   0.001     1.075903    1.338255
  _IAL_cat_2 |   1.471866   .1040276     5.47   0.000     1.279477    1.693185
      bmxbmi |   1.075577   .0039873    19.65   0.000     1.067703    1.083509
    ridageyr |   1.048363   .0022979    21.55   0.000     1.043819    1.052928
       _cons |   .0092218   .0013955   -30.97   0.000     .0068322    .0124472
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_S <- c(.9008402,1.065697     , 1.171644     , 1.077879)
D_OR <- (OR3-OR_S)/OR3
100*D_OR
[1] -3.363596 -4.627294 -5.847598 -7.036610
100*mean(abs(D_OR))
[1] 5.218775

Alcohol

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.SMK_cat bmxbmi ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       70,029
Number of PSUs     =       214                Population size   =  305,720,293
                                              Subpop. no. obs   =       20,859
                                              Subpop. size      =  140,699,700
                                              Design df         =          109
                                              F(  14,     96)   =       123.54
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9215587   .0474467    -1.59   0.115     .8321598    1.020562
      _IMJ_2 |   1.120635   .0865014     1.48   0.143      .961662    1.305887
      _IMJ_3 |    1.19904   .1788696     1.22   0.226     .8921304    1.611533
      _IMJ_4 |   1.112326   .1187614     1.00   0.321     .9001815    1.374465
        gndr |   2.536739   .0980884    24.07   0.000     2.349593     2.73879
_Irace_eth_2 |   1.428177   .0733461     6.94   0.000     1.289961    1.581203
_Irace_eth_3 |   .8924284   .0480463    -2.11   0.037     .8021067    .9929208
_Irace_eth_4 |   .9957015   .0545228    -0.08   0.937     .8932965    1.109846
 _ISMK_cat_1 |   1.121132   .0694253     1.85   0.068     .9916421    1.267531
 _ISMK_cat_2 |   1.134052   .0734463     1.94   0.055     .9974396    1.289376
 _ISMK_cat_3 |     1.1993     .09233     2.36   0.020     1.029583    1.396994
 _ISMK_cat_4 |   1.345636   .2121171     1.88   0.062     .9845629    1.839127
      bmxbmi |   1.076641   .0037402    21.26   0.000     1.069254     1.08408
    ridageyr |   1.044424   .0022112    20.53   0.000     1.040051    1.048816
       _cons |   .0111999   .0016446   -30.59   0.000     .0083719    .0149832
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_A <- c(.9215587,1.120635  , 1.19904     , 1.112326   )
D_OR <- (OR3-OR_A)/OR3
100*D_OR
[1]  -5.740864 -10.020961  -8.322583 -10.457300
100*mean(abs(D_OR))
[1] 8.635427

BMI

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.SMK_cat i.AL_cat ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       68,033
Number of PSUs     =       214                Population size   =  293,207,892
                                              Subpop. no. obs   =       18,863
                                              Subpop. size      =  128,187,300
                                              Design df         =          109
                                              F(  15,     95)   =        95.35
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8525604   .0409787    -3.32   0.001     .7750905    .9377734
      _IMJ_2 |   .9170568   .0744154    -1.07   0.288     .7808171    1.077068
      _IMJ_3 |   .9763369   .1493085    -0.16   0.876     .7210518    1.322005
      _IMJ_4 |   .9083168   .0954446    -0.92   0.362      .737548    1.118625
        gndr |   2.549513   .1021531    23.36   0.000      2.35488    2.760234
_Irace_eth_2 |   1.684756   .0915052     9.60   0.000     1.512816    1.876238
_Irace_eth_3 |   .9581874    .050741    -0.81   0.422      .862718    1.064222
_Irace_eth_4 |   .9184648    .052357    -1.49   0.139     .8203423    1.028324
 _ISMK_cat_1 |   1.157892   .0743315     2.28   0.024     1.019557    1.314997
 _ISMK_cat_2 |   1.044546   .0717566     0.63   0.527     .9115838    1.196902
 _ISMK_cat_3 |   1.056807   .0833636     0.70   0.485     .9038511    1.235647
 _ISMK_cat_4 |   1.148418   .1784989     0.89   0.375     .8439417    1.562744
  _IAL_cat_1 |   1.185131   .0650206     3.10   0.002     1.063022    1.321267
  _IAL_cat_2 |    1.52412   .1116208     5.75   0.000     1.318198    1.762211
    ridageyr |   1.050682    .002324    22.35   0.000     1.046086    1.055298
       _cons |   .0710004   .0072701   -25.83   0.000     .0579593    .0869758
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_B <- c(.8525604,.9170568  , .9763369, .9083168)
D_OR <- (OR3-OR_B)/OR3
100*D_OR
[1]  2.176092  9.965805 11.796658  9.801424
100*mean(abs(D_OR))
[1] 8.434995

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.SMK_cat i.AL_cat bmxbmi indfmpir, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.SMK_cat         _ISMK_cat_0-4       (naturally coded; _ISMK_cat_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       66,576
Number of PSUs     =       214                Population size   =  285,370,796
                                              Subpop. no. obs   =       17,406
                                              Subpop. size      =  120,350,204
                                              Design df         =          109
                                              F(  16,     94)   =        80.10
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8509172   .0436453    -3.15   0.002     .7686654    .9419706
      _IMJ_2 |    .829701   .0675252    -2.29   0.024     .7061044    .9749319
      _IMJ_3 |   .8584919   .1291169    -1.01   0.313     .6372042    1.156628
      _IMJ_4 |   .8800438   .0928769    -1.21   0.229     .7139418     1.08479
        gndr |   2.566588    .108348    22.33   0.000     2.360583    2.790569
_Irace_eth_2 |   1.408094   .0795242     6.06   0.000     1.258981    1.574868
_Irace_eth_3 |   .8210774   .0448496    -3.61   0.000     .7368296     .914958
_Irace_eth_4 |   .9093024   .0560238    -1.54   0.126     .8047769    1.027404
 _ISMK_cat_1 |   1.335107   .0845307     4.56   0.000     1.177656     1.51361
 _ISMK_cat_2 |   1.166527   .0924424     1.94   0.055     .9969727    1.364917
 _ISMK_cat_3 |    1.41749   .1060534     4.66   0.000     1.222138    1.644069
 _ISMK_cat_4 |   1.803394   .2738536     3.88   0.000     1.334691    2.436692
  _IAL_cat_1 |   1.047061   .0564944     0.85   0.396     .9408702    1.165237
  _IAL_cat_2 |   1.147178   .0807064     1.95   0.054     .9978714    1.318824
      bmxbmi |   1.083186   .0038972    22.21   0.000      1.07549    1.090938
    indfmpir |   1.064385   .0156055     4.26   0.000       1.0339    1.095768
       _cons |   .0432163   .0055442   -24.49   0.000     .0335136    .0557281
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_A <- c(.8509172,.829701, .8584919 , .8800438)
D_OR <- (OR3-OR_A)/OR3
100*D_OR
[1]  2.364635 18.542165 22.442904 12.609017
100*mean(abs(D_OR))
[1] 13.98968

Result

Of the variables above, smoking has the least average change in OR; it will be excluded from the next cycle.

OR4 <- OR_S

Deletion Cycle 5

Gender

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ i.race_eth i.AL_cat bmxbmi ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       67,991
Number of PSUs     =       214                Population size   =  292,944,878
                                              Subpop. no. obs   =       18,821
                                              Subpop. size      =  127,924,286
                                              Design df         =          109
                                              F(  11,     99)   =        93.40
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9997446   .0473145    -0.01   0.996     .9102324    1.098059
      _IMJ_2 |   1.271005   .0879447     3.47   0.001     1.108125    1.457826
      _IMJ_3 |   1.537365   .2372203     2.79   0.006     1.132294    2.087346
      _IMJ_4 |   1.360446    .138497     3.02   0.003      1.11187    1.664595
_Irace_eth_2 |   1.365571   .0707416     6.01   0.000     1.232321    1.513229
_Irace_eth_3 |    .918571   .0470872    -1.66   0.100     .8298299    1.016802
_Irace_eth_4 |   .9807279   .0563314    -0.34   0.735     .8752014    1.098978
  _IAL_cat_1 |   1.006606   .0531149     0.12   0.901     .9066522     1.11758
  _IAL_cat_2 |   1.540519   .1065286     6.25   0.000     1.343212    1.766808
      bmxbmi |   1.071479    .003915    18.90   0.000     1.063747    1.079266
    ridageyr |   1.045966   .0022464    20.93   0.000     1.041523    1.050427
       _cons |   .0181792    .002754   -26.45   0.000     .0134641    .0245455
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_G <- c(.9997446,1.271005   , 1.537365     , 1.360446     )
D_OR <- (OR4-OR_G)/OR4
100*D_OR
[1] -10.97913 -19.26514 -31.21434 -26.21509
100*mean(abs(D_OR))
[1] 21.91843

Race/Ethnicity

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.AL_cat bmxbmi ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       67,991
Number of PSUs     =       214                Population size   =  292,944,878
                                              Subpop. no. obs   =       18,821
                                              Subpop. size      =  127,924,286
                                              Design df         =          109
                                              F(   9,    101)   =       171.42
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9195897   .0431616    -1.79   0.077     .8379031     1.00924
      _IMJ_2 |   1.125541   .0807243     1.65   0.102     .9763994    1.297464
      _IMJ_3 |   1.256641    .187487     1.53   0.129     .9349512    1.689016
      _IMJ_4 |   1.136796   .1206675     1.21   0.230     .9211185    1.402973
        gndr |   2.678669   .1097468    24.05   0.000     2.469751    2.905259
  _IAL_cat_1 |   1.178936   .0645598     3.01   0.003     1.057679    1.314093
  _IAL_cat_2 |   1.404028   .0972246     4.90   0.000      1.22397    1.610573
      bmxbmi |   1.076922   .0039402    20.25   0.000     1.069141     1.08476
    ridageyr |   1.048122   .0022665    21.73   0.000     1.043639    1.052623
       _cons |   .0092223   .0013177   -32.80   0.000     .0069479    .0122412
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_R <- c(.9195897,1.125541   , 1.256641    , 1.136796  )
D_OR <- (OR4-OR_R)/OR4
100*D_OR
[1] -2.081335 -5.615480 -7.254507 -5.466012
100*mean(abs(D_OR))
[1] 5.104334

Alcohol

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth bmxbmi ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       70,080
Number of PSUs     =       214                Population size   =  305,959,182
                                              Subpop. no. obs   =       20,910
                                              Subpop. size      =  140,938,589
                                              Design df         =          109
                                              F(  10,    100)   =       166.70
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9671812   .0453606    -0.71   0.478     .8813299    1.061395
      _IMJ_2 |    1.20545   .0813543     2.77   0.007     1.054527    1.377973
      _IMJ_3 |   1.310135   .1960042     1.81   0.074     .9739608    1.762344
      _IMJ_4 |   1.228613   .1277532     1.98   0.050     .9997978    1.509796
        gndr |   2.550909   .0984551    24.26   0.000     2.363051    2.753701
_Irace_eth_2 |   1.403748   .0704649     6.76   0.000     1.270811    1.550591
_Irace_eth_3 |   .8879768   .0480192    -2.20   0.030     .7977272    .9884367
_Irace_eth_4 |   .9883466   .0538039    -0.22   0.830     .8872603     1.10095
      bmxbmi |   1.076436   .0037414    21.19   0.000     1.069046    1.083877
    ridageyr |   1.045265   .0021573    21.45   0.000     1.040998     1.04955
       _cons |   .0112235    .001637   -30.78   0.000     .0084058    .0149856
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_A <- c(.9671812,1.20545 , 1.310135   , 1.228613     )
D_OR <- (OR4-OR_A)/OR4
100*D_OR
[1]  -7.364347 -13.113765 -11.820229 -13.984315
100*mean(abs(D_OR))
[1] 11.57066

BMI

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.AL_cat ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       68,083
Number of PSUs     =       214                Population size   =  293,445,655
                                              Subpop. no. obs   =       18,913
                                              Subpop. size      =  128,425,062
                                              Design df         =          109
                                              F(  11,     99)   =       125.27
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .8825243   .0378787    -2.91   0.004     .8105545    .9608843
      _IMJ_2 |   .9491352   .0690822    -0.72   0.475      .821634    1.096422
      _IMJ_3 |   1.020527   .1554441     0.13   0.894     .7545982    1.380171
      _IMJ_4 |   .9561007   .0970679    -0.44   0.659     .7818356    1.169208
        gndr |    2.56154   .1025656    23.49   0.000     2.366115    2.773105
_Irace_eth_2 |   1.656981   .0884833     9.46   0.000     1.490572    1.841969
_Irace_eth_3 |    .955664   .0515213    -0.84   0.402     .8588167    1.063433
_Irace_eth_4 |   .9153065   .0520016    -1.56   0.122     .8178319    1.024399
  _IAL_cat_1 |   1.194147   .0653169     3.24   0.002     1.071462    1.330881
  _IAL_cat_2 |   1.545072   .1108688     6.06   0.000     1.340244    1.781204
    ridageyr |    1.05158   .0022663    23.34   0.000     1.047098    1.056081
       _cons |   .0697174   .0070696   -26.26   0.000      .057024    .0852365
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_B <- c(.8825243,.9491352 , 1.020527   ,  .9561007)
D_OR <- (OR4-OR_B)/OR4
100*D_OR
[1]  2.033202 10.937612 12.897860 11.297956
100*mean(abs(D_OR))
[1] 9.291657

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.race_eth i.AL_cat bmxbmi indfmpir, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       66,620
Number of PSUs     =       214                Population size   =  285,567,745
                                              Subpop. no. obs   =       17,450
                                              Subpop. size      =  120,547,153
                                              Design df         =          109
                                              F(  12,     98)   =       100.31
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |    .929861   .0428316    -1.58   0.117       .84873    1.018748
      _IMJ_2 |   .9209674   .0665825    -1.14   0.257     .7980218    1.062854
      _IMJ_3 |   .9745637   .1480893    -0.17   0.866     .7211311    1.317062
      _IMJ_4 |   1.017064   .1073789     0.16   0.873     .8250343     1.25379
        gndr |   2.600123   .1088726    22.82   0.000     2.393052    2.825111
_Irace_eth_2 |   1.329777   .0719617     5.27   0.000     1.194533    1.480332
_Irace_eth_3 |   .7811936   .0423633    -4.55   0.000     .7015856    .8698347
_Irace_eth_4 |   .8848302   .0536862    -2.02   0.046     .7845747    .9978966
  _IAL_cat_1 |   1.068888   .0578136     1.23   0.221     .9602312     1.18984
  _IAL_cat_2 |   1.205082   .0827465     2.72   0.008     1.051751    1.380766
      bmxbmi |   1.083248   .0038822    22.31   0.000      1.07558    1.090969
    indfmpir |   1.051686   .0149628     3.54   0.001     1.022444    1.081763
       _cons |   .0471104   .0060684   -23.72   0.000     .0364956    .0608126
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_A <- c(.929861,.9209674, .9745637 , 1.017064)
D_OR <- (OR4-OR_A)/OR4
100*D_OR
[1] -3.221526 13.580746 16.820835  5.642099
100*mean(abs(D_OR))
[1] 9.816301

Result

Of the variables above, race/ethnicity has the least average change in OR; it will be excluded from the next cycle.

OR5 <- OR_R

Deletion Cycle 6

Gender

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ i.AL_cat bmxbmi ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       67,991
Number of PSUs     =       214                Population size   =  292,944,878
                                              Subpop. no. obs   =       18,821
                                              Subpop. size      =  127,924,286
                                              Design df         =          109
                                              F(   8,    102)   =        99.70
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   1.009946   .0471021     0.21   0.832     .9207761    1.107752
      _IMJ_2 |   1.319251   .0903153     4.05   0.000     1.151862    1.510965
      _IMJ_3 |   1.612652   .2449228     3.15   0.002     1.193473    2.179058
      _IMJ_4 |   1.408112   .1409049     3.42   0.001     1.154793       1.717
  _IAL_cat_1 |    .995409   .0524549    -0.09   0.931       .89669    1.104996
  _IAL_cat_2 |   1.487766   .1009319     5.86   0.000     1.300588    1.701882
      bmxbmi |   1.072757   .0038712    19.46   0.000     1.065111    1.080457
    ridageyr |   1.045685    .002211    21.13   0.000     1.041312    1.050076
       _cons |   .0181979   .0025789   -28.27   0.000     .0137417    .0240992
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_G <- c(1.009946,1.319251   , 1.612652        , 1.408112        )
D_OR <- (OR5-OR_G)/OR5
100*D_OR
[1]  -9.825719 -17.210390 -28.330366 -23.866727
100*mean(abs(D_OR))
[1] 19.8083

Alcohol

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr bmxbmi ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       70,080
Number of PSUs     =       214                Population size   =  305,959,182
                                              Subpop. no. obs   =       20,910
                                              Subpop. size      =  140,938,589
                                              Design df         =          109
                                              F(   7,    103)   =       209.35
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9741905   .0445573    -0.57   0.569     .8897639    1.066628
      _IMJ_2 |   1.246359   .0826781     3.32   0.001     1.092809    1.421484
      _IMJ_3 |    1.36807   .2019934     2.12   0.036     1.020984    1.833149
      _IMJ_4 |   1.266254   .1293705     2.31   0.023     1.034139    1.550467
        gndr |   2.519126   .0968387    24.03   0.000     2.334324    2.718558
      bmxbmi |   1.077551   .0036974    21.77   0.000     1.070247    1.084904
    ridageyr |   1.045197   .0021175    21.82   0.000     1.041008    1.049402
       _cons |   .0111882   .0015324   -32.80   0.000     .0085285    .0146775
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_A <- c(.9741905,1.246359 , 1.36807   , 1.266254        )
D_OR <- (OR5-OR_A)/OR5
100*D_OR
[1]  -5.937518 -10.734216  -8.867210 -11.387971
100*mean(abs(D_OR))
[1] 9.231729

BMI

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.AL_cat ridageyr, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       68,083
Number of PSUs     =       214                Population size   =  293,445,655
                                              Subpop. no. obs   =       18,913
                                              Subpop. size      =  128,425,062
                                              Design df         =          109
                                              F(   8,    102)   =       154.55
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |    .894893   .0383556    -2.59   0.011     .8220127    .9742349
      _IMJ_2 |    1.00085   .0723496     0.01   0.991     .8672539    1.155025
      _IMJ_3 |   1.096039   .1625644     0.62   0.538     .8168809    1.470597
      _IMJ_4 |   1.005481   .1001634     0.05   0.956       .82533    1.224956
        gndr |   2.510727   .1003495    23.03   0.000     2.319511    2.717706
  _IAL_cat_1 |   1.172589   .0637246     2.93   0.004     1.052854    1.305942
  _IAL_cat_2 |   1.477613   .1033961     5.58   0.000     1.286261    1.697432
    ridageyr |   1.051039   .0022176    23.59   0.000     1.046653    1.055443
       _cons |   .0749875   .0068302   -28.44   0.000     .0626019    .0898237
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_B <- c(.894893,1.00085    , 1.096039      ,  1.005481   )
D_OR <- (OR5-OR_B)/OR5
100*D_OR
[1]  2.685622 11.078317 12.780261 11.551325
100*mean(abs(D_OR))
[1] 9.523881

Age

use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)

xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.AL_cat bmxbmi indfmpir, or
      pweight: wtmec12yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.MJ              _IMJ_0-4            (naturally coded; _IMJ_0 omitted)
i.AL_cat          _IAL_cat_0-2        (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =       105                Number of obs     =       66,620
Number of PSUs     =       214                Population size   =  285,567,745
                                              Subpop. no. obs   =       17,450
                                              Subpop. size      =  120,547,153
                                              Design df         =          109
                                              F(   9,    101)   =       118.83
                                              Prob > F          =       0.0000

------------------------------------------------------------------------------
             |             Linearized
      BP_cat | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      _IMJ_1 |   .9619515   .0440727    -0.85   0.399     .8784494    1.053391
      _IMJ_2 |   .9781208   .0698408    -0.31   0.757     .8490471    1.126817
      _IMJ_3 |    1.05203   .1567575     0.34   0.734     .7830167    1.413465
      _IMJ_4 |   1.081387   .1130711     0.75   0.456     .8789803    1.330402
        gndr |   2.556899   .1066919    22.50   0.000     2.353947    2.777349
  _IAL_cat_1 |   1.051098   .0568805     0.92   0.359     .9441979    1.170101
  _IAL_cat_2 |    1.14898    .077502     2.06   0.042     1.005199    1.313328
      bmxbmi |    1.08422   .0038513    22.76   0.000     1.076613     1.09188
    indfmpir |   1.053271   .0144658     3.78   0.000     1.024987    1.082336
       _cons |   .0452901   .0053826   -26.04   0.000     .0357853    .0573194
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
OR_A <- c(.9619515,.9781208, 1.05203    , 1.081387   )
D_OR <- (OR5-OR_A)/OR5
100*D_OR
[1] -4.606598 13.097719 16.282375  4.874137
100*mean(abs(D_OR))
[1] 9.715207

Result

Of the variables above, alcohol use has the least average change in OR. However, alcohol use has a greater than 10% change in OR for heavy marijuana use. Therefore no further deletion will be performed. The variables included in step 5 will produce the final models. Model 1 will be the crude model; model 2 will include gender and age as confounders; and model 3 will include gender and age, as well as the mediators BMI and alcohol use.