use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr i.AL_cat bmxbmi ridageyr, or
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
i.AL_cat _IAL_cat_0-2 (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 105 Number of obs = 67,991
Number of PSUs = 214 Population size = 292,944,878
Subpop. no. obs = 18,821
Subpop. size = 127,924,286
Design df = 109
F( 9, 101) = 171.42
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .9195897 .0431616 -1.79 0.077 .8379031 1.00924
_IMJ_2 | 1.125541 .0807243 1.65 0.102 .9763994 1.297464
_IMJ_3 | 1.256641 .187487 1.53 0.129 .9349512 1.689016
_IMJ_4 | 1.136796 .1206675 1.21 0.230 .9211185 1.402973
gndr | 2.678669 .1097468 24.05 0.000 2.469751 2.905259
_IAL_cat_1 | 1.178936 .0645598 3.01 0.003 1.057679 1.314093
_IAL_cat_2 | 1.404028 .0972246 4.90 0.000 1.22397 1.610573
bmxbmi | 1.076922 .0039402 20.25 0.000 1.069141 1.08476
ridageyr | 1.048122 .0022665 21.73 0.000 1.043639 1.052623
_cons | .0092223 .0013177 -32.80 0.000 .0069479 .0122412
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ gndr ridageyr, or
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
F( 6, 104) = 210.20
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .9599054 .0403027 -0.97 0.332 .8832601 1.043202
_IMJ_2 | 1.111107 .0745439 1.57 0.119 .9727652 1.269124
_IMJ_3 | 1.213377 .1784316 1.32 0.191 .9066055 1.623953
_IMJ_4 | 1.1299 .1107676 1.25 0.216 .930373 1.372216
gndr | 2.374512 .088687 23.15 0.000 2.205085 2.556956
ridageyr | 1.047735 .0020607 23.71 0.000 1.043659 1.051827
_cons | .0939611 .0077396 -28.71 0.000 .0798082 .1106239
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1 & gndr==1): logit BP_cat i.MJ gndr i.AL_cat bmxbmi ridageyr, or
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
i.AL_cat _IAL_cat_0-2 (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 69,030
Number of PSUs = 214 Population size = 299,205,783
Subpop. no. obs = 9,181
Subpop. size = 63,854,681.3
Design df = 109
F( 8, 102) = 46.02
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | 1.03377 .06878 0.50 0.619 .9060561 1.179486
_IMJ_2 | 1.263003 .1145963 2.57 0.011 1.055128 1.511833
_IMJ_3 | 1.445419 .2437275 2.18 0.031 1.03479 2.018995
_IMJ_4 | 1.247216 .1815545 1.52 0.132 .9346373 1.664333
gndr | 1 (omitted)
_IAL_cat_1 | 1.20197 .0786707 2.81 0.006 1.055737 1.368458
_IAL_cat_2 | 1.397182 .1183305 3.95 0.000 1.181281 1.652542
bmxbmi | 1.086816 .0059293 15.26 0.000 1.075128 1.098632
ridageyr | 1.028045 .0027995 10.16 0.000 1.022511 1.033608
_cons | .0369985 .0072712 -16.78 0.000 .0250624 .0546192
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1 & gndr==0): logit BP_cat i.MJ gndr i.AL_cat bmxbmi ridageyr, or
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
i.AL_cat _IAL_cat_0-2 (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 69,151
Number of PSUs = 214 Population size = 300,284,148
Subpop. no. obs = 9,640
Subpop. size = 64,069,604.7
Design df = 109
F( 8, 102) = 86.72
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .8397025 .057369 -2.56 0.012 .7333614 .9614637
_IMJ_2 | 1.02052 .1209216 0.17 0.864 .8069195 1.290663
_IMJ_3 | .8498809 .2407074 -0.57 0.567 .4848084 1.489862
_IMJ_4 | .9591782 .1709363 -0.23 0.816 .6737561 1.365513
gndr | 1 (omitted)
_IAL_cat_1 | 1.160256 .0894539 1.93 0.056 .9958428 1.351814
_IAL_cat_2 | 1.401877 .1502714 3.15 0.002 1.133555 1.733712
bmxbmi | 1.074915 .0044394 17.49 0.000 1.066152 1.08375
ridageyr | 1.071599 .0034429 21.52 0.000 1.064797 1.078444
_cons | .0041514 .0008711 -26.14 0.000 .0027388 .0062924
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ*gndr gndr i.AL_cat bmxbmi ridageyr, or
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
i.MJ*gndr _IMJXgndr_# (coded as above)
i.AL_cat _IAL_cat_0-2 (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 67,991
Number of PSUs = 214 Population size = 292,944,878
Subpop. no. obs = 18,821
Subpop. size = 127,924,286
Design df = 109
F( 13, 97) = 113.80
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .8408813 .055042 -2.65 0.009 .73857 .9573653
_IMJ_2 | .900777 .0927807 -1.01 0.313 .7344439 1.10478
_IMJ_3 | .7677384 .2118636 -0.96 0.340 .444304 1.326619
_IMJ_4 | .8710944 .1504346 -0.80 0.426 .6186083 1.226633
gndr | 2.314181 .1481713 13.10 0.000 2.03838 2.627299
_IMJXgndr_1 | 1.207781 .1173943 1.94 0.055 .9961488 1.464376
_IMJXgndr_2 | 1.483855 .1925096 3.04 0.003 1.147414 1.918946
_IMJXgndr_3 | 2.089399 .626913 2.46 0.016 1.152804 3.786928
_IMJXgndr_4 | 1.547986 .3697322 1.83 0.070 .9642232 2.485173
gndr | 1 (omitted)
_IAL_cat_1 | 1.187764 .0650172 3.14 0.002 1.065647 1.323876
_IAL_cat_2 | 1.409399 .0979624 4.94 0.000 1.22802 1.617567
bmxbmi | 1.077271 .0039565 20.27 0.000 1.069457 1.085141
ridageyr | 1.048078 .0022851 21.54 0.000 1.043559 1.052617
_cons | .009751 .0014435 -31.28 0.000 .0072716 .013076
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ*gndr gndr i.AL_cat bmxbmi ridageyr, or
# long form
lincom (1*_IMJ_1 + 0*_IMJ_2 + 0*_IMJ_3 + 0*_IMJ_4 + 1*gndr + 1*_IMJXgndr_1 + 0*_IMJXgndr_2 + 0*_IMJXgndr_3 + 0*_IMJXgndr_4) - (1*_IMJ_1 + 0*_IMJ_2 + 0*_IMJ_3 + 0*_IMJ_4 + 0*gndr + 0*_IMJXgndr_1 + 0*_IMJXgndr_2 + 0*_IMJXgndr_3 + 0*_IMJXgndr_4)
# reduced form
lincom gndr + _IMJXgndr_1
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
i.MJ*gndr _IMJXgndr_# (coded as above)
i.AL_cat _IAL_cat_0-2 (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 67,991
Number of PSUs = 214 Population size = 292,944,878
Subpop. no. obs = 18,821
Subpop. size = 127,924,286
Design df = 109
F( 13, 97) = 113.80
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .8408813 .055042 -2.65 0.009 .73857 .9573653
_IMJ_2 | .900777 .0927807 -1.01 0.313 .7344439 1.10478
_IMJ_3 | .7677384 .2118636 -0.96 0.340 .444304 1.326619
_IMJ_4 | .8710944 .1504346 -0.80 0.426 .6186083 1.226633
gndr | 2.314181 .1481713 13.10 0.000 2.03838 2.627299
_IMJXgndr_1 | 1.207781 .1173943 1.94 0.055 .9961488 1.464376
_IMJXgndr_2 | 1.483855 .1925096 3.04 0.003 1.147414 1.918946
_IMJXgndr_3 | 2.089399 .626913 2.46 0.016 1.152804 3.786928
_IMJXgndr_4 | 1.547986 .3697322 1.83 0.070 .9642232 2.485173
gndr | 1 (omitted)
_IAL_cat_1 | 1.187764 .0650172 3.14 0.002 1.065647 1.323876
_IAL_cat_2 | 1.409399 .0979624 4.94 0.000 1.22802 1.617567
bmxbmi | 1.077271 .0039565 20.27 0.000 1.069457 1.085141
ridageyr | 1.048078 .0022851 21.54 0.000 1.043559 1.052617
_cons | .009751 .0014435 -31.28 0.000 .0072716 .013076
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_1 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | 1.027841 .0659409 15.59 0.000 .8971484 1.158534
------------------------------------------------------------------------------
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_1 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | 1.027841 .0659409 15.59 0.000 .8971484 1.158534
------------------------------------------------------------------------------
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ*gndr gndr i.AL_cat bmxbmi ridageyr, or
# long form
lincom (0*_IMJ_1 + 1*_IMJ_2 + 0*_IMJ_3 + 0*_IMJ_4 + 1*gndr + 0*_IMJXgndr_1 + 1*_IMJXgndr_2 + 0*_IMJXgndr_3 + 0*_IMJXgndr_4) - (0*_IMJ_1 + 1*_IMJ_2 + 0*_IMJ_3 + 0*_IMJ_4 + 0*gndr + 0*_IMJXgndr_1 + 0*_IMJXgndr_2 + 0*_IMJXgndr_3 + 0*_IMJXgndr_4)
# reduced form
lincom gndr + _IMJXgndr_2
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
i.MJ*gndr _IMJXgndr_# (coded as above)
i.AL_cat _IAL_cat_0-2 (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 67,991
Number of PSUs = 214 Population size = 292,944,878
Subpop. no. obs = 18,821
Subpop. size = 127,924,286
Design df = 109
F( 13, 97) = 113.80
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .8408813 .055042 -2.65 0.009 .73857 .9573653
_IMJ_2 | .900777 .0927807 -1.01 0.313 .7344439 1.10478
_IMJ_3 | .7677384 .2118636 -0.96 0.340 .444304 1.326619
_IMJ_4 | .8710944 .1504346 -0.80 0.426 .6186083 1.226633
gndr | 2.314181 .1481713 13.10 0.000 2.03838 2.627299
_IMJXgndr_1 | 1.207781 .1173943 1.94 0.055 .9961488 1.464376
_IMJXgndr_2 | 1.483855 .1925096 3.04 0.003 1.147414 1.918946
_IMJXgndr_3 | 2.089399 .626913 2.46 0.016 1.152804 3.786928
_IMJXgndr_4 | 1.547986 .3697322 1.83 0.070 .9642232 2.485173
gndr | 1 (omitted)
_IAL_cat_1 | 1.187764 .0650172 3.14 0.002 1.065647 1.323876
_IAL_cat_2 | 1.409399 .0979624 4.94 0.000 1.22802 1.617567
bmxbmi | 1.077271 .0039565 20.27 0.000 1.069457 1.085141
ridageyr | 1.048078 .0022851 21.54 0.000 1.043559 1.052617
_cons | .009751 .0014435 -31.28 0.000 .0072716 .013076
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_2 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | 1.233699 .1234798 9.99 0.000 .9889662 1.478432
------------------------------------------------------------------------------
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_2 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | 1.233699 .1234798 9.99 0.000 .9889662 1.478432
------------------------------------------------------------------------------
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ*gndr gndr i.AL_cat bmxbmi ridageyr, or
# long form
lincom (0*_IMJ_1 + 0*_IMJ_2 + 1*_IMJ_3 + 0*_IMJ_4 + 1*gndr + 0*_IMJXgndr_1 + 0*_IMJXgndr_2 + 1*_IMJXgndr_3 + 0*_IMJXgndr_4) - (0*_IMJ_1 + 0*_IMJ_2 + 1*_IMJ_3 + 0*_IMJ_4 + 0*gndr + 0*_IMJXgndr_1 + 0*_IMJXgndr_2 + 0*_IMJXgndr_3 + 0*_IMJXgndr_4)
# reduced form
lincom gndr + _IMJXgndr_3
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
i.MJ*gndr _IMJXgndr_# (coded as above)
i.AL_cat _IAL_cat_0-2 (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 67,991
Number of PSUs = 214 Population size = 292,944,878
Subpop. no. obs = 18,821
Subpop. size = 127,924,286
Design df = 109
F( 13, 97) = 113.80
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .8408813 .055042 -2.65 0.009 .73857 .9573653
_IMJ_2 | .900777 .0927807 -1.01 0.313 .7344439 1.10478
_IMJ_3 | .7677384 .2118636 -0.96 0.340 .444304 1.326619
_IMJ_4 | .8710944 .1504346 -0.80 0.426 .6186083 1.226633
gndr | 2.314181 .1481713 13.10 0.000 2.03838 2.627299
_IMJXgndr_1 | 1.207781 .1173943 1.94 0.055 .9961488 1.464376
_IMJXgndr_2 | 1.483855 .1925096 3.04 0.003 1.147414 1.918946
_IMJXgndr_3 | 2.089399 .626913 2.46 0.016 1.152804 3.786928
_IMJXgndr_4 | 1.547986 .3697322 1.83 0.070 .9642232 2.485173
gndr | 1 (omitted)
_IAL_cat_1 | 1.187764 .0650172 3.14 0.002 1.065647 1.323876
_IAL_cat_2 | 1.409399 .0979624 4.94 0.000 1.22802 1.617567
bmxbmi | 1.077271 .0039565 20.27 0.000 1.069457 1.085141
ridageyr | 1.048078 .0022851 21.54 0.000 1.043559 1.052617
_cons | .009751 .0014435 -31.28 0.000 .0072716 .013076
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_3 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | 1.575932 .3023817 5.21 0.000 .9766215 2.175243
------------------------------------------------------------------------------
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_3 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | 1.575932 .3023817 5.21 0.000 .9766215 2.175243
------------------------------------------------------------------------------
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ*gndr gndr i.AL_cat bmxbmi ridageyr, or
# long form
lincom (0*_IMJ_1 + 0*_IMJ_2 + 0*_IMJ_3 + 1*_IMJ_4 + 1*gndr + 0*_IMJXgndr_1 + 0*_IMJXgndr_2 + 0*_IMJXgndr_3 + 1*_IMJXgndr_4) - (0*_IMJ_1 + 0*_IMJ_2 + 0*_IMJ_3 + 1*_IMJ_4 + 0*gndr + 0*_IMJXgndr_1 + 0*_IMJXgndr_2 + 0*_IMJXgndr_3 + 0*_IMJXgndr_4)
# reduced form
lincom gndr + _IMJXgndr_4
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
i.MJ*gndr _IMJXgndr_# (coded as above)
i.AL_cat _IAL_cat_0-2 (naturally coded; _IAL_cat_0 omitted)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 67,991
Number of PSUs = 214 Population size = 292,944,878
Subpop. no. obs = 18,821
Subpop. size = 127,924,286
Design df = 109
F( 13, 97) = 113.80
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .8408813 .055042 -2.65 0.009 .73857 .9573653
_IMJ_2 | .900777 .0927807 -1.01 0.313 .7344439 1.10478
_IMJ_3 | .7677384 .2118636 -0.96 0.340 .444304 1.326619
_IMJ_4 | .8710944 .1504346 -0.80 0.426 .6186083 1.226633
gndr | 2.314181 .1481713 13.10 0.000 2.03838 2.627299
_IMJXgndr_1 | 1.207781 .1173943 1.94 0.055 .9961488 1.464376
_IMJXgndr_2 | 1.483855 .1925096 3.04 0.003 1.147414 1.918946
_IMJXgndr_3 | 2.089399 .626913 2.46 0.016 1.152804 3.786928
_IMJXgndr_4 | 1.547986 .3697322 1.83 0.070 .9642232 2.485173
gndr | 1 (omitted)
_IAL_cat_1 | 1.187764 .0650172 3.14 0.002 1.065647 1.323876
_IAL_cat_2 | 1.409399 .0979624 4.94 0.000 1.22802 1.617567
bmxbmi | 1.077271 .0039565 20.27 0.000 1.069457 1.085141
ridageyr | 1.048078 .0022851 21.54 0.000 1.043559 1.052617
_cons | .009751 .0014435 -31.28 0.000 .0072716 .013076
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_4 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | 1.276011 .222936 5.72 0.000 .834159 1.717863
------------------------------------------------------------------------------
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_4 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | 1.276011 .222936 5.72 0.000 .834159 1.717863
------------------------------------------------------------------------------
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1 & gndr==1): logit BP_cat i.MJ gndr ridageyr, or
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 10,341
Subpop. size = 71,193,951.1
Design df = 109
F( 5, 105) = 27.14
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | 1.072846 .065836 1.15 0.254 .9499846 1.211598
_IMJ_2 | 1.175496 .1036334 1.83 0.069 .9870414 1.399931
_IMJ_3 | 1.216172 .2048764 1.16 0.248 .8709469 1.698237
_IMJ_4 | 1.136323 .1415161 1.03 0.307 .8877778 1.454452
gndr | 1 (omitted)
ridageyr | 1.027805 .0025803 10.92 0.000 1.022703 1.032931
_cons | .4421024 .0485597 -7.43 0.000 .355614 .5496256
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1 & gndr==0): logit BP_cat i.MJ gndr ridageyr, or
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 10,679
Subpop. size = 70,330,509.5
Design df = 109
F( 5, 105) = 127.66
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .8788361 .0518984 -2.19 0.031 .7817666 .9879585
_IMJ_2 | 1.062862 .1053095 0.62 0.540 .8733574 1.293485
_IMJ_3 | 1.11219 .2761763 0.43 0.669 .6798883 1.819366
_IMJ_4 | 1.113811 .1969892 0.61 0.543 .7844718 1.581414
gndr | 1 (omitted)
ridageyr | 1.071201 .0029653 24.85 0.000 1.06534 1.077095
_cons | .03911 .0048993 -25.88 0.000 .0305113 .0501318
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ*gndr gndr ridageyr, or
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
i.MJ*gndr _IMJXgndr_# (coded as above)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
F( 10, 100) = 124.87
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .8837478 .0491521 -2.22 0.028 .7915073 .9867379
_IMJ_2 | .9450544 .085931 -0.62 0.536 .7892065 1.131678
_IMJ_3 | 1.01972 .2408252 0.08 0.934 .6385536 1.628412
_IMJ_4 | 1.013036 .1680923 0.08 0.938 .7291217 1.407504
gndr | 2.114103 .1225442 12.92 0.000 1.884657 2.371483
_IMJXgndr_1 | 1.190736 .1030301 2.02 0.046 1.003083 1.413493
_IMJXgndr_2 | 1.343683 .1634726 2.43 0.017 1.055788 1.710081
_IMJXgndr_3 | 1.340381 .3702171 1.06 0.291 .7753261 2.317245
_IMJXgndr_4 | 1.221547 .2665687 0.92 0.361 .7926362 1.882551
gndr | 1 (omitted)
ridageyr | 1.047645 .0020781 23.46 0.000 1.043534 1.051771
_cons | .0993138 .0088017 -26.06 0.000 .0833153 .1183843
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ*gndr gndr ridageyr, or
# long form
lincom (1*_IMJ_1 + 0*_IMJ_2 + 0*_IMJ_3 + 0*_IMJ_4 + 1*gndr + 1*_IMJXgndr_1 + 0*_IMJXgndr_2 + 0*_IMJXgndr_3 + 0*_IMJXgndr_4) - (1*_IMJ_1 + 0*_IMJ_2 + 0*_IMJ_3 + 0*_IMJ_4 + 0*gndr + 0*_IMJXgndr_1 + 0*_IMJXgndr_2 + 0*_IMJXgndr_3 + 0*_IMJXgndr_4)
# reduced form
lincom gndr + _IMJXgndr_1
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
i.MJ*gndr _IMJXgndr_# (coded as above)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
F( 10, 100) = 124.87
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .8837478 .0491521 -2.22 0.028 .7915073 .9867379
_IMJ_2 | .9450544 .085931 -0.62 0.536 .7892065 1.131678
_IMJ_3 | 1.01972 .2408252 0.08 0.934 .6385536 1.628412
_IMJ_4 | 1.013036 .1680923 0.08 0.938 .7291217 1.407504
gndr | 2.114103 .1225442 12.92 0.000 1.884657 2.371483
_IMJXgndr_1 | 1.190736 .1030301 2.02 0.046 1.003083 1.413493
_IMJXgndr_2 | 1.343683 .1634726 2.43 0.017 1.055788 1.710081
_IMJXgndr_3 | 1.340381 .3702171 1.06 0.291 .7753261 2.317245
_IMJXgndr_4 | 1.221547 .2665687 0.92 0.361 .7926362 1.882551
gndr | 1 (omitted)
ridageyr | 1.047645 .0020781 23.46 0.000 1.043534 1.051771
_cons | .0993138 .0088017 -26.06 0.000 .0833153 .1183843
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_1 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .923202 .0592154 15.59 0.000 .805839 1.040565
------------------------------------------------------------------------------
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_1 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .923202 .0592154 15.59 0.000 .805839 1.040565
------------------------------------------------------------------------------
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ*gndr gndr ridageyr, or
# long form
lincom (0*_IMJ_1 + 1*_IMJ_2 + 0*_IMJ_3 + 0*_IMJ_4 + 1*gndr + 0*_IMJXgndr_1 + 1*_IMJXgndr_2 + 0*_IMJXgndr_3 + 0*_IMJXgndr_4) - (0*_IMJ_1 + 1*_IMJ_2 + 0*_IMJ_3 + 0*_IMJ_4 + 0*gndr + 0*_IMJXgndr_1 + 0*_IMJXgndr_2 + 0*_IMJXgndr_3 + 0*_IMJXgndr_4)
# reduced form
lincom gndr + _IMJXgndr_2
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
i.MJ*gndr _IMJXgndr_# (coded as above)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
F( 10, 100) = 124.87
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .8837478 .0491521 -2.22 0.028 .7915073 .9867379
_IMJ_2 | .9450544 .085931 -0.62 0.536 .7892065 1.131678
_IMJ_3 | 1.01972 .2408252 0.08 0.934 .6385536 1.628412
_IMJ_4 | 1.013036 .1680923 0.08 0.938 .7291217 1.407504
gndr | 2.114103 .1225442 12.92 0.000 1.884657 2.371483
_IMJXgndr_1 | 1.190736 .1030301 2.02 0.046 1.003083 1.413493
_IMJXgndr_2 | 1.343683 .1634726 2.43 0.017 1.055788 1.710081
_IMJXgndr_3 | 1.340381 .3702171 1.06 0.291 .7753261 2.317245
_IMJXgndr_4 | 1.221547 .2665687 0.92 0.361 .7926362 1.882551
gndr | 1 (omitted)
ridageyr | 1.047645 .0020781 23.46 0.000 1.043534 1.051771
_cons | .0993138 .0088017 -26.06 0.000 .0833153 .1183843
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_2 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | 1.044045 .1114583 9.37 0.000 .8231381 1.264952
------------------------------------------------------------------------------
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_2 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | 1.044045 .1114583 9.37 0.000 .8231381 1.264952
------------------------------------------------------------------------------
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ*gndr gndr ridageyr, or
# long form
lincom (0*_IMJ_1 + 0*_IMJ_2 + 1*_IMJ_3 + 0*_IMJ_4 + 1*gndr + 0*_IMJXgndr_1 + 0*_IMJXgndr_2 + 1*_IMJXgndr_3 + 0*_IMJXgndr_4) - (0*_IMJ_1 + 0*_IMJ_2 + 1*_IMJ_3 + 0*_IMJ_4 + 0*gndr + 0*_IMJXgndr_1 + 0*_IMJXgndr_2 + 0*_IMJXgndr_3 + 0*_IMJXgndr_4)
# reduced form
lincom gndr + _IMJXgndr_3
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
i.MJ*gndr _IMJXgndr_# (coded as above)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
F( 10, 100) = 124.87
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .8837478 .0491521 -2.22 0.028 .7915073 .9867379
_IMJ_2 | .9450544 .085931 -0.62 0.536 .7892065 1.131678
_IMJ_3 | 1.01972 .2408252 0.08 0.934 .6385536 1.628412
_IMJ_4 | 1.013036 .1680923 0.08 0.938 .7291217 1.407504
gndr | 2.114103 .1225442 12.92 0.000 1.884657 2.371483
_IMJXgndr_1 | 1.190736 .1030301 2.02 0.046 1.003083 1.413493
_IMJXgndr_2 | 1.343683 .1634726 2.43 0.017 1.055788 1.710081
_IMJXgndr_3 | 1.340381 .3702171 1.06 0.291 .7753261 2.317245
_IMJXgndr_4 | 1.221547 .2665687 0.92 0.361 .7926362 1.882551
gndr | 1 (omitted)
ridageyr | 1.047645 .0020781 23.46 0.000 1.043534 1.051771
_cons | .0993138 .0088017 -26.06 0.000 .0833153 .1183843
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_3 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | 1.041584 .2720195 3.83 0.000 .5024505 1.580718
------------------------------------------------------------------------------
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_3 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | 1.041584 .2720195 3.83 0.000 .5024505 1.580718
------------------------------------------------------------------------------
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ*gndr gndr ridageyr, or
# long form
lincom (0*_IMJ_1 + 0*_IMJ_2 + 0*_IMJ_3 + 1*_IMJ_4 + 1*gndr + 0*_IMJXgndr_1 + 0*_IMJXgndr_2 + 0*_IMJXgndr_3 + 1*_IMJXgndr_4) - (0*_IMJ_1 + 0*_IMJ_2 + 0*_IMJ_3 + 1*_IMJ_4 + 0*gndr + 0*_IMJXgndr_1 + 0*_IMJXgndr_2 + 0*_IMJXgndr_3 + 0*_IMJXgndr_4)
# reduced form
lincom gndr + _IMJXgndr_4
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
i.MJ*gndr _IMJXgndr_# (coded as above)
(running logit on estimation sample)
note: gndr omitted because of collinearity
Survey: Logistic regression
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
F( 10, 100) = 124.87
Prob > F = 0.0000
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .8837478 .0491521 -2.22 0.028 .7915073 .9867379
_IMJ_2 | .9450544 .085931 -0.62 0.536 .7892065 1.131678
_IMJ_3 | 1.01972 .2408252 0.08 0.934 .6385536 1.628412
_IMJ_4 | 1.013036 .1680923 0.08 0.938 .7291217 1.407504
gndr | 2.114103 .1225442 12.92 0.000 1.884657 2.371483
_IMJXgndr_1 | 1.190736 .1030301 2.02 0.046 1.003083 1.413493
_IMJXgndr_2 | 1.343683 .1634726 2.43 0.017 1.055788 1.710081
_IMJXgndr_3 | 1.340381 .3702171 1.06 0.291 .7753261 2.317245
_IMJXgndr_4 | 1.221547 .2665687 0.92 0.361 .7926362 1.882551
gndr | 1 (omitted)
ridageyr | 1.047645 .0020781 23.46 0.000 1.043534 1.051771
_cons | .0993138 .0088017 -26.06 0.000 .0833153 .1183843
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_4 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .948749 .2022165 4.69 0.000 .5479625 1.349535
------------------------------------------------------------------------------
Unknown #command
( 1) [BP_cat]gndr + [BP_cat]_IMJXgndr_4 = 0
------------------------------------------------------------------------------
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .948749 .2022165 4.69 0.000 .5479625 1.349535
------------------------------------------------------------------------------
To be calculated later