use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta gndr MJ,col percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
----------------------------------------------------------------------
| Cannabis Use
Gender | Never Us Past Use 1-10 tim 11-20 ti 21-30 ti Total
----------+-----------------------------------------------------------
Female | 55.9 48.04 40.97 32.66 33.86 49.69
Male | 44.1 51.96 59.03 67.34 66.14 50.31
|
Total | 100 100 100 100 100 100
----------------------------------------------------------------------
Key: column percentage
Pearson:
Uncorrected chi2(4) = 1107.0835
Design-based F(3.78, 412.13) = 66.4444 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta EDUC_cat MJ,col percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,182
Number of PSUs = 214 Population size = 306,497,065
Subpop. no. obs = 21,012
Subpop. size = 141,476,473
Design df = 109
----------------------------------------------------------------------
Recode |
Education | Cannabis Use
Level | Never Us Past Use 1-10 tim 11-20 ti 21-30 ti Total
----------+-----------------------------------------------------------
Less tha | 7.085 1.744 1.874 1.67 1.922 3.898
Less tha | 9.988 8.983 14.19 15.52 15.79 10.23
High Sch | 21.26 21.76 26.36 29.15 29.56 22.42
Some Col | 29.65 34.62 38.25 37.43 37.16 33.09
College | 32.01 32.89 19.32 16.23 15.57 30.36
|
Total | 100 100 100 100 100 100
----------------------------------------------------------------------
Key: column percentage
Pearson:
Uncorrected chi2(16) = 2472.1393
Design-based F(11.08, 1207.95)= 24.2108 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta race_eth MJ,col percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
----------------------------------------------------------------------
Recoded |
Race & | Cannabis Use
Ethnicity | Never Us Past Use 1-10 tim 11-20 ti 21-30 ti Total
----------+-----------------------------------------------------------
White-NH | 53.44 74.26 64.28 67.16 68.09 64.71
Black_NH | 11.57 10.05 17.02 18.77 15.36 11.62
Mex Am | 14.9 6.577 6.924 4.781 5.489 9.854
Oth | 20.1 9.111 11.78 9.286 11.06 13.82
|
Total | 100 100 100 100 100 100
----------------------------------------------------------------------
Key: column percentage
Pearson:
Uncorrected chi2(12) = 3901.2184
Design-based F(8.98, 978.73) = 75.6501 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta sddsrvyr MJ,col percent
svy, subpop(if include==1): ta sddsrvyr MJ,row percent
svy: ta sddsrvyr MJ,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
----------------------------------------------------------------------
Survey | Cannabis Use
Year | Never Us Past Use 1-10 tim 11-20 ti 21-30 ti Total
----------+-----------------------------------------------------------
2005-200 | 12.4 13.93 11.69 11.62 9.246 12.89
2007-200 | 13.66 15.09 12.4 10.74 8.412 13.92
2009-201 | 14.77 13.74 12.38 13.63 12.11 13.97
2011-201 | 14.09 14.63 14.63 13.17 11.59 14.25
2013-201 | 14.98 14.84 13.83 17.11 15.68 14.9
2015-201 | 15.71 13.61 17.36 14.12 18.48 14.98
2017-201 | 14.38 14.16 17.71 19.61 24.48 15.1
|
Total | 100 100 100 100 100 100
----------------------------------------------------------------------
Key: column percentage
Pearson:
Uncorrected chi2(24) = 607.7589
Design-based F(14.66, 1598.15)= 2.8815 P = 0.0002
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
----------------------------------------------------------------------
Survey | Cannabis Use
Year | Never Us Past Use 1-10 tim 11-20 ti 21-30 ti Total
----------+-----------------------------------------------------------
2005-200 | 38.52 49.26 7.332 1.682 3.205 100
2007-200 | 39.27 49.39 7.197 1.439 2.699 100
2009-201 | 42.33 44.82 7.165 1.819 3.872 100
2011-201 | 39.58 46.77 8.296 1.724 3.632 100
2013-201 | 40.27 45.39 7.505 2.142 4.702 100
2015-201 | 41.98 41.39 9.366 1.757 5.509 100
2017-201 | 38.13 42.73 9.479 2.422 7.24 100
|
Total | 40.03 45.56 8.082 1.865 4.466 100
----------------------------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(24) = 607.7589
Design-based F(14.66, 1598.15)= 2.8815 P = 0.0002
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 23,560
Number of PSUs = 214 Population size = 153,861,444
Design df = 109
----------------------------------------------------------------------
Survey | Cannabis Use
Year | Never Us Past Use 1-10 tim 11-20 ti 21-30 ti Total
----------+-----------------------------------------------------------
2005-200 | 38.46 49.36 7.352 1.821 3.002 100
2007-200 | 39.54 49 7.306 1.418 2.738 100
2009-201 | 42.79 43.57 7.689 1.95 3.996 100
2011-201 | 40.14 45.39 8.623 1.851 4 100
2013-201 | 40.83 44.73 7.67 2.079 4.692 100
2015-201 | 42.68 40.4 9.612 1.801 5.511 100
2017-201 | 39.13 41.5 9.722 2.608 7.034 100
|
Total | 40.51 44.75 8.312 1.945 4.48 100
----------------------------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(24) = 209.0587
Design-based F(15.06, 1641.12)= 3.1631 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean indfmpir,over(MJ)coeflegend
# svy, subpop(if include==1): mean indfmpir,over(MJ)
test _b[c.indfmpir@0bn.MJ] = _b[c.indfmpir@1.MJ] = _b[c.indfmpir@2.MJ] = _b[c.indfmpir@3.MJ] = _b[c.indfmpir@4.MJ]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,616
Number of PSUs = 214 Population size = 298,070,653
Subpop. no. obs = 19,446
Subpop. size = 133,050,061
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.indfmpir@|
MJ |
Never Use | 2.939763 _b[c.indfmpir@0bn.MJ]
Past Use | 3.269252 _b[c.indfmpir@1.MJ]
1-10 time.. | 2.614583 _b[c.indfmpir@2.MJ]
11-20 tim.. | 2.513165 _b[c.indfmpir@3.MJ]
21-30 tim.. | 2.41803 _b[c.indfmpir@4.MJ]
------------------------------------------------------------------------------
Unknown #command
Adjusted Wald test
( 1) c.indfmpir@0bn.MJ - c.indfmpir@1.MJ = 0
( 2) c.indfmpir@0bn.MJ - c.indfmpir@2.MJ = 0
( 3) c.indfmpir@0bn.MJ - c.indfmpir@3.MJ = 0
( 4) c.indfmpir@0bn.MJ - c.indfmpir@4.MJ = 0
F( 4, 106) = 50.95
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean ridageyr,over(MJ)coeflegend
# svy, subpop(if include==1): mean ridageyr,over(MJ)
test _b[c.ridageyr@0bn.MJ] = _b[c.ridageyr@1.MJ] = _b[c.ridageyr@2.MJ] = _b[c.ridageyr@3.MJ] = _b[c.ridageyr@4.MJ]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.ridageyr@|
MJ |
Never Use | 40.00752 _b[c.ridageyr@0bn.MJ]
Past Use | 40.49582 _b[c.ridageyr@1.MJ]
1-10 time.. | 35.33275 _b[c.ridageyr@2.MJ]
11-20 tim.. | 34.51169 _b[c.ridageyr@3.MJ]
21-30 tim.. | 35.48715 _b[c.ridageyr@4.MJ]
------------------------------------------------------------------------------
Unknown #command
Adjusted Wald test
( 1) c.ridageyr@0bn.MJ - c.ridageyr@1.MJ = 0
( 2) c.ridageyr@0bn.MJ - c.ridageyr@2.MJ = 0
( 3) c.ridageyr@0bn.MJ - c.ridageyr@3.MJ = 0
( 4) c.ridageyr@0bn.MJ - c.ridageyr@4.MJ = 0
F( 4, 106) = 52.43
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta SMK_cat MJ,col percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,139
Number of PSUs = 214 Population size = 306,306,164
Subpop. no. obs = 20,969
Subpop. size = 141,285,572
Design df = 109
----------------------------------------------------------------------
Smoking | Cannabis Use
Category | Never Us Past Use 1-10 tim 11-20 ti 21-30 ti Total
----------+-----------------------------------------------------------
Never | 80.38 44.5 33.68 22.94 22.33 56.59
Past Smo | 9.603 28.92 19.4 24.01 22.55 20.05
Light, 1 | 6.429 14.11 26.45 32.37 26.98 12.95
Moderate | 2.639 9.617 15.87 12.38 22.48 7.957
Heavy, 2 | .9485 2.848 4.603 8.304 5.664 2.458
|
Total | 100 100 100 100 100 100
----------------------------------------------------------------------
Key: column percentage
Pearson:
Uncorrected chi2(16) = 1.36e+04
Design-based F(12.73, 1388.10)= 154.0665 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta AL_cat MJ,col percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 68,083
Number of PSUs = 214 Population size = 293,445,655
Subpop. no. obs = 18,913
Subpop. size = 128,425,062
Design df = 109
----------------------------------------------------------------------
Alcohol |
Use | Cannabis Use
Category | Never Us Past Use 1-10 tim 11-20 ti 21-30 ti Total
----------+-----------------------------------------------------------
None-Lig | 67.21 43.03 27.13 26.87 29.56 50.41
Moderate | 23.04 37.29 40.17 42.04 38.1 31.97
Heavy | 9.748 19.68 32.7 31.09 32.33 17.62
|
Total | 100 100 100 100 100 100
----------------------------------------------------------------------
Key: column percentage
Pearson:
Uncorrected chi2(8) = 6327.1530
Design-based F(7.08, 771.43) = 137.4894 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean bmxbmi,over(MJ)coeflegend
# svy, subpop(if include==1): mean bmxbmi,over(MJ)
test _b[c.bmxbmi@0bn.MJ] = _b[c.bmxbmi@1.MJ] = _b[c.bmxbmi@2.MJ] = _b[c.bmxbmi@3.MJ] = _b[c.bmxbmi@4.MJ]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,080
Number of PSUs = 214 Population size = 305,959,182
Subpop. no. obs = 20,910
Subpop. size = 140,938,589
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.bmxbmi@MJ |
Never Use | 29.33353 _b[c.bmxbmi@0bn.MJ]
Past Use | 29.08767 _b[c.bmxbmi@1.MJ]
1-10 time.. | 27.53893 _b[c.bmxbmi@2.MJ]
11-20 tim.. | 27.50304 _b[c.bmxbmi@3.MJ]
21-30 tim.. | 27.55856 _b[c.bmxbmi@4.MJ]
------------------------------------------------------------------------------
Unknown #command
Adjusted Wald test
( 1) c.bmxbmi@0bn.MJ - c.bmxbmi@1.MJ = 0
( 2) c.bmxbmi@0bn.MJ - c.bmxbmi@2.MJ = 0
( 3) c.bmxbmi@0bn.MJ - c.bmxbmi@3.MJ = 0
( 4) c.bmxbmi@0bn.MJ - c.bmxbmi@4.MJ = 0
F( 4, 106) = 27.14
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean hei2015,over(MJ)coeflegend
# svy, subpop(if include==1): mean hei2015,over(MJ)
test _b[c.hei2015@0bn.MJ] = _b[c.hei2015@1.MJ] = _b[c.hei2015@2.MJ] = _b[c.hei2015@3.MJ] = _b[c.hei2015@4.MJ]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,641
Number of PSUs = 214 Population size = 297,338,173
Subpop. no. obs = 19,471
Subpop. size = 132,317,580
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.hei2015@MJ |
Never Use | 53.1429 _b[c.hei2015@0bn.MJ]
Past Use | 52.03995 _b[c.hei2015@1.MJ]
1-10 time.. | 51.06963 _b[c.hei2015@2.MJ]
11-20 tim.. | 48.62243 _b[c.hei2015@3.MJ]
21-30 tim.. | 47.69787 _b[c.hei2015@4.MJ]
------------------------------------------------------------------------------
Unknown #command
Adjusted Wald test
( 1) c.hei2015@0bn.MJ - c.hei2015@1.MJ = 0
( 2) c.hei2015@0bn.MJ - c.hei2015@2.MJ = 0
( 3) c.hei2015@0bn.MJ - c.hei2015@3.MJ = 0
( 4) c.hei2015@0bn.MJ - c.hei2015@4.MJ = 0
F( 4, 106) = 19.85
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta MJ BP_cat,col percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
------------------------------------------------------------
Cannabis | BP Category
Use | Normal Elevated Stage 1 Stage 2 Total
----------+-------------------------------------------------
Never Us | 40.58 38.45 40.07 39.67 40.03
Past Use | 45.16 44.9 46.31 46.99 45.56
1-10 tim | 8.142 8.26 8.02 7.65 8.082
11-20 ti | 1.78 2.629 1.583 1.667 1.865
21-30 ti | 4.332 5.76 4.02 4.026 4.466
|
Total | 100 100 100 100 100
------------------------------------------------------------
Key: column percentage
Pearson:
Uncorrected chi2(12) = 119.2777
Design-based F(10.34, 1127.35)= 1.7538 P = 0.0621
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta gndr BP_cat,col percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
------------------------------------------------------------
| BP Category
Gender | Normal Elevated Stage 1 Stage 2 Total
----------+-------------------------------------------------
Female | 59.18 40.12 39.75 37.89 49.69
Male | 40.82 59.88 60.25 62.11 50.31
|
Total | 100 100 100 100 100
------------------------------------------------------------
Key: column percentage
Pearson:
Uncorrected chi2(3) = 2738.0310
Design-based F(2.93, 319.03) = 166.1565 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta EDUC_cat BP_cat,col percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,182
Number of PSUs = 214 Population size = 306,497,065
Subpop. no. obs = 21,012
Subpop. size = 141,476,473
Design df = 109
------------------------------------------------------------
Recode |
Education | BP Category
Level | Normal Elevated Stage 1 Stage 2 Total
----------+-------------------------------------------------
Less tha | 3.752 4.067 3.694 4.732 3.898
Less tha | 9.664 11.73 9.513 12.07 10.23
High Sch | 20.74 23.16 24.59 25.18 22.42
Some Col | 32.09 34.3 34.07 34.16 33.09
College | 33.75 26.74 28.14 23.86 30.36
|
Total | 100 100 100 100 100
------------------------------------------------------------
Key: column percentage
Pearson:
Uncorrected chi2(12) = 534.2715
Design-based F(9.53, 1038.28)= 9.1242 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta race_eth BP_cat,col percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
------------------------------------------------------------
Recoded |
Race & | BP Category
Ethnicity | Normal Elevated Stage 1 Stage 2 Total
----------+-------------------------------------------------
White-NH | 64.74 65.5 66.9 59.22 64.71
Black_NH | 9.822 11.53 12.17 19.24 11.62
Mex Am | 10.5 10.35 8.508 8.608 9.854
Oth | 14.94 12.62 12.42 12.93 13.82
|
Total | 100 100 100 100 100
------------------------------------------------------------
Key: column percentage
Pearson:
Uncorrected chi2(9) = 664.5386
Design-based F(6.93, 755.86) = 21.3869 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta sddsrvyr BP_cat,col percent
svy, subpop(if include==1): ta sddsrvyr BP_cat,row percent
svy: ta sddsrvyr BP_cat,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
------------------------------------------------------------
Survey | BP Category
Year | Normal Elevated Stage 1 Stage 2 Total
----------+-------------------------------------------------
2005-200 | 12.76 12.98 12.6 13.9 12.89
2007-200 | 13.61 15.44 13.86 13.26 13.92
2009-201 | 14.62 13.44 13.77 12.04 13.97
2011-201 | 13.9 15.44 14.69 13.28 14.25
2013-201 | 16.5 12.6 13.5 13.37 14.9
2015-201 | 14.38 16.74 14.98 15.23 14.98
2017-201 | 14.23 13.37 16.61 18.91 15.1
|
Total | 100 100 100 100 100
------------------------------------------------------------
Key: column percentage
Pearson:
Uncorrected chi2(18) = 391.5812
Design-based F(14.36, 1564.70)= 2.6532 P = 0.0007
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
------------------------------------------------------------
Survey | BP Category
Year | Normal Elevated Stage 1 Stage 2 Total
----------+-------------------------------------------------
2005-200 | 51.42 16.39 20.35 11.83 100
2007-200 | 50.77 18.05 20.73 10.45 100
2009-201 | 54.38 15.65 20.52 9.453 100
2011-201 | 50.68 17.63 21.47 10.22 100
2013-201 | 57.53 13.76 18.87 9.844 100
2015-201 | 49.86 18.18 20.81 11.15 100
2017-201 | 48.95 14.41 22.9 13.74 100
|
Total | 51.94 16.27 20.82 10.97 100
------------------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(18) = 391.5812
Design-based F(14.36, 1564.70)= 2.6532 P = 0.0007
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 48,783
Number of PSUs = 214 Population size = 253,372,307
Design df = 109
------------------------------------------------------------
Survey | BP Category
Year | Normal Elevated Stage 1 Stage 2 Total
----------+-------------------------------------------------
2005-200 | 52.13 15.37 18.3 14.2 100
2007-200 | 51.63 16.65 18.27 13.44 100
2009-201 | 55.14 15.07 17.64 12.15 100
2011-201 | 52.3 15.96 18.34 13.4 100
2013-201 | 56.46 13.54 17.27 12.73 100
2015-201 | 50.58 17.04 17.87 14.51 100
2017-201 | 50.52 14.54 18.13 16.82 100
|
Total | 52.68 15.44 17.96 13.92 100
------------------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(18) = 160.9478
Design-based F(13.43, 1463.93)= 2.9553 P = 0.0002
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean indfmpir,over(BP_cat)coeflegend
# svy, subpop(if include==1): mean indfmpir,over(BP_cat)
test _b[c.indfmpir@0bn.BP_cat] = _b[c.indfmpir@1.BP_cat] = _b[c.indfmpir@2.BP_cat] = _b[c.indfmpir@3.BP_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,616
Number of PSUs = 214 Population size = 298,070,653
Subpop. no. obs = 19,446
Subpop. size = 133,050,061
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.indfmpir@|
BP_cat |
Normal | 2.99598 _b[c.indfmpir@0bn.BP_cat]
Elevated | 3.048932 _b[c.indfmpir@1.BP_cat]
Stage 1 HTN | 3.146777 _b[c.indfmpir@2.BP_cat]
Stage 2 HTN | 2.983115 _b[c.indfmpir@3.BP_cat]
------------------------------------------------------------------------------
Unknown #command
Adjusted Wald test
( 1) c.indfmpir@0bn.BP_cat - c.indfmpir@1.BP_cat = 0
( 2) c.indfmpir@0bn.BP_cat - c.indfmpir@2.BP_cat = 0
( 3) c.indfmpir@0bn.BP_cat - c.indfmpir@3.BP_cat = 0
F( 3, 107) = 5.83
Prob > F = 0.0010
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean ridageyr,over(BP_cat)coeflegend
# svy, subpop(if include==1): mean ridageyr,over(BP_cat)
test _b[c.ridageyr@0bn.BP_cat] = _b[c.ridageyr@1.BP_cat] = _b[c.ridageyr@2.BP_cat] = _b[c.ridageyr@3.BP_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.ridageyr@|
BP_cat |
Normal | 36.84837 _b[c.ridageyr@0bn.BP_cat]
Elevated | 39.80971 _b[c.ridageyr@1.BP_cat]
Stage 1 HTN | 42.49584 _b[c.ridageyr@2.BP_cat]
Stage 2 HTN | 46.34788 _b[c.ridageyr@3.BP_cat]
------------------------------------------------------------------------------
Unknown #command
Adjusted Wald test
( 1) c.ridageyr@0bn.BP_cat - c.ridageyr@1.BP_cat = 0
( 2) c.ridageyr@0bn.BP_cat - c.ridageyr@2.BP_cat = 0
( 3) c.ridageyr@0bn.BP_cat - c.ridageyr@3.BP_cat = 0
F( 3, 107) = 426.82
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta SMK_cat BP_cat,col percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,139
Number of PSUs = 214 Population size = 306,306,164
Subpop. no. obs = 20,969
Subpop. size = 141,285,572
Design df = 109
------------------------------------------------------------
Smoking | BP Category
Category | Normal Elevated Stage 1 Stage 2 Total
----------+-------------------------------------------------
Never | 59.66 53.82 54.27 50.53 56.59
Past Smo | 17.73 20.26 23.25 24.62 20.05
Light, 1 | 13.18 13.04 12.43 12.72 12.95
Moderate | 7.487 9.711 7.626 8.214 7.957
Heavy, 2 | 1.943 3.166 2.426 3.907 2.458
|
Total | 100 100 100 100 100
------------------------------------------------------------
Key: column percentage
Pearson:
Uncorrected chi2(12) = 582.8883
Design-based F(10.11, 1101.90)= 8.6741 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta AL_cat BP_cat,col percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 68,083
Number of PSUs = 214 Population size = 293,445,655
Subpop. no. obs = 18,913
Subpop. size = 128,425,062
Design df = 109
------------------------------------------------------------
Alcohol |
Use | BP Category
Category | Normal Elevated Stage 1 Stage 2 Total
----------+-------------------------------------------------
None-Lig | 50.44 49.59 51.25 49.9 50.41
Moderate | 33.52 29.99 30.25 30.66 31.97
Heavy | 16.03 20.41 18.5 19.44 17.62
|
Total | 100 100 100 100 100
------------------------------------------------------------
Key: column percentage
Pearson:
Uncorrected chi2(6) = 180.9869
Design-based F(5.44, 592.57) = 4.3702 P = 0.0004
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean bmxbmi,over(BP_cat)coeflegend
# svy, subpop(if include==1): mean bmxbmi,over(BP_cat)
test _b[c.bmxbmi@0bn.BP_cat] = _b[c.bmxbmi@1.BP_cat] = _b[c.bmxbmi@2.BP_cat] = _b[c.bmxbmi@3.BP_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,080
Number of PSUs = 214 Population size = 305,959,182
Subpop. no. obs = 20,910
Subpop. size = 140,938,589
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.bmxbmi@|
BP_cat |
Normal | 27.37689 _b[c.bmxbmi@0bn.BP_cat]
Elevated | 29.89496 _b[c.bmxbmi@1.BP_cat]
Stage 1 HTN | 30.65476 _b[c.bmxbmi@2.BP_cat]
Stage 2 HTN | 31.90733 _b[c.bmxbmi@3.BP_cat]
------------------------------------------------------------------------------
Unknown #command
Adjusted Wald test
( 1) c.bmxbmi@0bn.BP_cat - c.bmxbmi@1.BP_cat = 0
( 2) c.bmxbmi@0bn.BP_cat - c.bmxbmi@2.BP_cat = 0
( 3) c.bmxbmi@0bn.BP_cat - c.bmxbmi@3.BP_cat = 0
F( 3, 107) = 244.38
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean hei2015,over(BP_cat)coeflegend
# svy, subpop(if include==1): mean hei2015,over(BP_cat)
test _b[c.hei2015@0bn.BP_cat] = _b[c.hei2015@1.BP_cat] = _b[c.hei2015@2.BP_cat] = _b[c.hei2015@3.BP_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,641
Number of PSUs = 214 Population size = 297,338,173
Subpop. no. obs = 19,471
Subpop. size = 132,317,580
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.hei2015@|
BP_cat |
Normal | 52.75911 _b[c.hei2015@0bn.BP_cat]
Elevated | 51.61592 _b[c.hei2015@1.BP_cat]
Stage 1 HTN | 51.55083 _b[c.hei2015@2.BP_cat]
Stage 2 HTN | 51.24657 _b[c.hei2015@3.BP_cat]
------------------------------------------------------------------------------
Unknown #command
Adjusted Wald test
( 1) c.hei2015@0bn.BP_cat - c.hei2015@1.BP_cat = 0
( 2) c.hei2015@0bn.BP_cat - c.hei2015@2.BP_cat = 0
( 3) c.hei2015@0bn.BP_cat - c.hei2015@3.BP_cat = 0
F( 3, 107) = 8.59
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
F( 4, 106) = 0.67
Prob > F = 0.6114
------------------------------------------------------------------------------
| Linearized
BP_cat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | .0468233 .0394893 1.19 0.238 -.0314431 .1250897
_IMJ_2 | .0131961 .0643588 0.21 0.838 -.114361 .1407532
_IMJ_3 | .1228651 .1372747 0.90 0.373 -.1492089 .3949392
_IMJ_4 | .0911235 .0857926 1.06 0.291 -.0789146 .2611616
_cons | -.1064847 .0321865 -3.31 0.001 -.1702773 -.0426921
------------------------------------------------------------------------------
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
xi: svy,subpop(if include==1): logit BP_cat i.MJ,or
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.MJ _IMJ_0-4 (naturally coded; _IMJ_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
F( 4, 106) = 0.67
Prob > F = 0.6114
------------------------------------------------------------------------------
| Linearized
BP_cat | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_IMJ_1 | 1.047937 .0413823 1.19 0.238 .9690461 1.13325
_IMJ_2 | 1.013284 .0652137 0.21 0.838 .8919359 1.15114
_IMJ_3 | 1.130732 .1552209 0.90 0.373 .8613892 1.484294
_IMJ_4 | 1.095404 .0939776 1.06 0.291 .9241188 1.298438
_cons | .8989888 .0289353 -3.31 0.001 .8434309 .9582063
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta gndr EDUC_cat,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,182
Number of PSUs = 214 Population size = 306,497,065
Subpop. no. obs = 21,012
Subpop. size = 141,476,473
Design df = 109
----------------------------------------------------------------------
| Recode Education Level
Gender | Less tha Less tha High Sch Some Col College Total
----------+-----------------------------------------------------------
Female | 3.343 9.514 20.25 34.85 32.04 100
Male | 4.447 10.94 24.57 31.35 28.7 100
|
Total | 3.898 10.23 22.42 33.09 30.36 100
----------------------------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(4) = 365.7317
Design-based F(3.67, 400.00) = 22.8025 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta gndr race_eth,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
------------------------------------------------------------
| Recoded Race & Ethnicity
Gender | White-NH Black_NH Mex Am Oth Total
----------+-------------------------------------------------
Female | 64.68 12.48 8.987 13.85 100
Male | 64.74 10.77 10.71 13.78 100
|
Total | 64.71 11.62 9.854 13.82 100
------------------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(3) = 97.1103
Design-based F(2.87, 312.31) = 14.3662 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta gndr sddsrvyr,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
-------------------------------------------------------------------------------
| Survey Year
Gender | 2005-200 2007-200 2009-201 2011-201 2013-201 2015-201 2017-201
---------+---------------------------------------------------------------------
Female | 12.98 13.88 13.77 14.1 14.94 15.09 15.24
Male | 12.79 13.96 14.17 14.39 14.85 14.88 14.96
|
Total | 12.89 13.92 13.97 14.25 14.9 14.98 15.1
-------------------------------------------------------------------------------
-------------------
| Survey
| Year
Gender | Total
---------+---------
Female | 100
Male | 100
|
Total | 100
-------------------
Key: row percentage
Pearson:
Uncorrected chi2(6) = 5.1459
Design-based F(4.99, 544.14) = 0.2324 P = 0.9481
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta gndr SMK_cat,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,139
Number of PSUs = 214 Population size = 306,306,164
Subpop. no. obs = 20,969
Subpop. size = 141,285,572
Design df = 109
----------------------------------------------------------------------
| Smoking Category
Gender | Never Past Smo Light, 1 Moderate Heavy, 2 Total
----------+-----------------------------------------------------------
Female | 61.66 17.22 12.32 7.178 1.625 100
Male | 51.58 22.84 13.57 8.728 3.281 100
|
Total | 56.59 20.05 12.95 7.957 2.458 100
----------------------------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(4) = 860.5035
Design-based F(3.87, 421.67) = 39.8445 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta gndr AL_cat,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 68,083
Number of PSUs = 214 Population size = 293,445,655
Subpop. no. obs = 18,913
Subpop. size = 128,425,062
Design df = 109
--------------------------------------------------
| Alcohol Use Category
Gender | None-Lig Moderate Heavy Total
----------+---------------------------------------
Female | 48.35 39.24 12.41 100
Male | 52.48 24.67 22.84 100
|
Total | 50.41 31.97 17.62 100
--------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(2) = 2238.9924
Design-based F(1.99, 217.07) = 175.7703 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean bmxbmi,over(gndr)coeflegend
test _b[c.bmxbmi@0bn.gndr] = _b[c.bmxbmi@1.gndr]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,080
Number of PSUs = 214 Population size = 305,959,182
Subpop. no. obs = 20,910
Subpop. size = 140,938,589
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.bmxbmi@|
gndr |
Female | 29.11206 _b[c.bmxbmi@0bn.gndr]
Male | 28.81604 _b[c.bmxbmi@1.gndr]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.bmxbmi@0bn.gndr - c.bmxbmi@1.gndr = 0
F( 1, 109) = 6.17
Prob > F = 0.0145
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean hei2015,over(gndr)coeflegend
test _b[c.hei2015@0bn.gndr] = _b[c.hei2015@1.gndr]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,641
Number of PSUs = 214 Population size = 297,338,173
Subpop. no. obs = 19,471
Subpop. size = 132,317,580
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.hei2015@|
gndr |
Female | 53.53765 _b[c.hei2015@0bn.gndr]
Male | 50.75907 _b[c.hei2015@1.gndr]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.hei2015@0bn.gndr - c.hei2015@1.gndr = 0
F( 1, 109) = 153.06
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean indfmpir,over(gndr)coeflegend
test _b[c.indfmpir@0bn.gndr] = _b[c.indfmpir@1.gndr]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,616
Number of PSUs = 214 Population size = 298,070,653
Subpop. no. obs = 19,446
Subpop. size = 133,050,061
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.indfmpir@|
gndr |
Female | 2.987887 _b[c.indfmpir@0bn.gndr]
Male | 3.080922 _b[c.indfmpir@1.gndr]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.indfmpir@0bn.gndr - c.indfmpir@1.gndr = 0
F( 1, 109) = 17.37
Prob > F = 0.0001
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean ridageyr,over(gndr)coeflegend
test _b[c.ridageyr@0bn.gndr] = _b[c.ridageyr@1.gndr]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.ridageyr@|
gndr |
Female | 39.72442 _b[c.ridageyr@0bn.gndr]
Male | 39.37335 _b[c.ridageyr@1.gndr]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.ridageyr@0bn.gndr - c.ridageyr@1.gndr = 0
F( 1, 109) = 3.44
Prob > F = 0.0663
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta EDUC_cat race_eth,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,182
Number of PSUs = 214 Population size = 306,497,065
Subpop. no. obs = 21,012
Subpop. size = 141,476,473
Design df = 109
------------------------------------------------------------
Recode |
Education | Recoded Race & Ethnicity
Level | White-NH Black_NH Mex Am Oth Total
----------+-------------------------------------------------
Less tha | 20.86 4.003 52.7 22.44 100
Less tha | 48.14 17.02 20.57 14.26 100
High Sch | 64.41 13.79 10.71 11.09 100
Some Col | 66.68 13.23 7.1 12.99 100
College | 74.01 7.439 3.115 15.44 100
|
Total | 64.71 11.63 9.857 13.8 100
------------------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(12) = 9559.3120
Design-based F(6.29, 685.66) = 145.8654 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta EDUC_cat sddsrvyr,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,182
Number of PSUs = 214 Population size = 306,497,065
Subpop. no. obs = 21,012
Subpop. size = 141,476,473
Design df = 109
-------------------------------------------------------------------------------
Recode |
Educatio | Survey Year
n Level | 2005-200 2007-200 2009-201 2011-201 2013-201 2015-201 2017-201
---------+---------------------------------------------------------------------
Less tha | 13.42 16.33 16.95 12.23 12.38 17.78 10.91
Less tha | 12.84 18.04 16.38 14.85 15.35 12.44 10.11
High Sch | 13.4 14.88 14.07 12.42 14 13.28 17.95
Some Col | 13.32 13.46 13.28 14.52 15.34 15.1 14.99
College | 11.97 12.03 13.39 15.38 15.26 16.62 15.34
|
Total | 12.88 13.92 13.95 14.25 14.9 14.99 15.1
-------------------------------------------------------------------------------
-------------------
Recode | Survey
Educatio | Year
n Level | Total
---------+---------
Less tha | 100
Less tha | 100
High Sch | 100
Some Col | 100
College | 100
|
Total | 100
-------------------
Key: row percentage
Pearson:
Uncorrected chi2(24) = 692.2766
Design-based F(11.34, 1236.34)= 1.9202 P = 0.0314
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta EDUC_cat SMK_cat,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,132
Number of PSUs = 214 Population size = 306,266,063
Subpop. no. obs = 20,962
Subpop. size = 141,245,471
Design df = 109
----------------------------------------------------------------------
Recode |
Education | Smoking Category
Level | Never Past Smo Light, 1 Moderate Heavy, 2 Total
----------+-----------------------------------------------------------
Less tha | 54.72 19.27 15.47 7.417 3.116 100
Less tha | 38.76 17.77 22.27 15.02 6.17 100
High Sch | 46.53 20.55 16.57 12.6 3.745 100
Some Col | 55.46 21.24 13.34 7.923 2.03 100
College | 71.45 19.25 6.399 2.256 .6407 100
|
Total | 56.58 20.05 12.95 7.957 2.458 100
----------------------------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(16) = 5491.4023
Design-based F(12.74, 1388.21)= 68.4062 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta EDUC_cat AL_cat,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 68,076
Number of PSUs = 214 Population size = 293,400,371
Subpop. no. obs = 18,906
Subpop. size = 128,379,779
Design df = 109
--------------------------------------------------
Recode |
Education | Alcohol Use Category
Level | None-Lig Moderate Heavy Total
----------+---------------------------------------
Less tha | 51.01 20.67 28.31 100
Less tha | 44.09 27.52 28.39 100
High Sch | 45.18 30.87 23.95 100
Some Col | 47.6 34.18 18.22 100
College | 58.99 33.06 7.95 100
|
Total | 50.41 31.97 17.62 100
--------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(8) = 2735.0891
Design-based F(6.78, 739.27) = 61.0964 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean bmxbmi,over(EDUC_cat)coeflegend
test _b[c.bmxbmi@1bn.EDUC_cat] = _b[c.bmxbmi@2.EDUC_cat] = _b[c.bmxbmi@3.EDUC_cat] = _b[c.bmxbmi@4.EDUC_cat] = _b[c.bmxbmi@5.EDUC_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,072
Number of PSUs = 214 Population size = 305,911,194
Subpop. no. obs = 20,902
Subpop. size = 140,890,602
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.bmxbmi@|
EDUC_cat |
Less than.. | 29.33933 _b[c.bmxbmi@1bn.EDUC_cat]
Less than.. | 29.14553 _b[c.bmxbmi@2.EDUC_cat]
High Scho.. | 29.60025 _b[c.bmxbmi@3.EDUC_cat]
Some Coll.. | 29.59903 _b[c.bmxbmi@4.EDUC_cat]
College G.. | 27.69729 _b[c.bmxbmi@5.EDUC_cat]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.bmxbmi@1bn.EDUC_cat - c.bmxbmi@2.EDUC_cat = 0
( 2) c.bmxbmi@1bn.EDUC_cat - c.bmxbmi@3.EDUC_cat = 0
( 3) c.bmxbmi@1bn.EDUC_cat - c.bmxbmi@4.EDUC_cat = 0
( 4) c.bmxbmi@1bn.EDUC_cat - c.bmxbmi@5.EDUC_cat = 0
F( 4, 106) = 32.56
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean hei2015,over(EDUC_cat)coeflegend
test _b[c.hei2015@1bn.EDUC_cat] = _b[c.hei2015@2.EDUC_cat] = _b[c.hei2015@3.EDUC_cat] = _b[c.hei2015@4.EDUC_cat] = _b[c.hei2015@5.EDUC_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,634
Number of PSUs = 214 Population size = 297,292,477
Subpop. no. obs = 19,464
Subpop. size = 132,271,885
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.hei2015@|
EDUC_cat |
Less than.. | 52.49825 _b[c.hei2015@1bn.EDUC_cat]
Less than.. | 48.05227 _b[c.hei2015@2.EDUC_cat]
High Scho.. | 48.40392 _b[c.hei2015@3.EDUC_cat]
Some Coll.. | 51.1144 _b[c.hei2015@4.EDUC_cat]
College G.. | 57.22355 _b[c.hei2015@5.EDUC_cat]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.hei2015@1bn.EDUC_cat - c.hei2015@2.EDUC_cat = 0
( 2) c.hei2015@1bn.EDUC_cat - c.hei2015@3.EDUC_cat = 0
( 3) c.hei2015@1bn.EDUC_cat - c.hei2015@4.EDUC_cat = 0
( 4) c.hei2015@1bn.EDUC_cat - c.hei2015@5.EDUC_cat = 0
F( 4, 106) = 140.52
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean indfmpir,over(EDUC_cat)coeflegend
test _b[c.indfmpir@1bn.EDUC_cat] = _b[c.indfmpir@2.EDUC_cat] = _b[c.indfmpir@3.EDUC_cat] = _b[c.indfmpir@4.EDUC_cat] = _b[c.indfmpir@5.EDUC_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,611
Number of PSUs = 214 Population size = 298,035,877
Subpop. no. obs = 19,441
Subpop. size = 133,015,285
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.indfmpir@|
EDUC_cat |
Less than.. | 1.398564 _b[c.indfmpir@1bn.EDUC_cat]
Less than.. | 1.851357 _b[c.indfmpir@2.EDUC_cat]
High Scho.. | 2.584835 _b[c.indfmpir@3.EDUC_cat]
Some Coll.. | 2.955572 _b[c.indfmpir@4.EDUC_cat]
College G.. | 4.020507 _b[c.indfmpir@5.EDUC_cat]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.indfmpir@1bn.EDUC_cat - c.indfmpir@2.EDUC_cat = 0
( 2) c.indfmpir@1bn.EDUC_cat - c.indfmpir@3.EDUC_cat = 0
( 3) c.indfmpir@1bn.EDUC_cat - c.indfmpir@4.EDUC_cat = 0
( 4) c.indfmpir@1bn.EDUC_cat - c.indfmpir@5.EDUC_cat = 0
F( 4, 106) = 619.35
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean ridageyr,over(EDUC_cat)coeflegend
test _b[c.ridageyr@1bn.EDUC_cat] = _b[c.ridageyr@2.EDUC_cat] = _b[c.ridageyr@3.EDUC_cat] = _b[c.ridageyr@4.EDUC_cat] = _b[c.ridageyr@5.EDUC_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,182
Number of PSUs = 214 Population size = 306,497,065
Subpop. no. obs = 21,012
Subpop. size = 141,476,473
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.ridageyr@|
EDUC_cat |
Less than.. | 40.84891 _b[c.ridageyr@1bn.EDUC_cat]
Less than.. | 38.74983 _b[c.ridageyr@2.EDUC_cat]
High Scho.. | 39.40502 _b[c.ridageyr@3.EDUC_cat]
Some Coll.. | 38.69284 _b[c.ridageyr@4.EDUC_cat]
College G.. | 40.69157 _b[c.ridageyr@5.EDUC_cat]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.ridageyr@1bn.EDUC_cat - c.ridageyr@2.EDUC_cat = 0
( 2) c.ridageyr@1bn.EDUC_cat - c.ridageyr@3.EDUC_cat = 0
( 3) c.ridageyr@1bn.EDUC_cat - c.ridageyr@4.EDUC_cat = 0
( 4) c.ridageyr@1bn.EDUC_cat - c.ridageyr@5.EDUC_cat = 0
F( 4, 106) = 10.99
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta race_eth sddsrvyr,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
-------------------------------------------------------------------------------
Recoded |
Race & |
Ethnicit | Survey Year
y | 2005-200 2007-200 2009-201 2011-201 2013-201 2015-201 2017-201
---------+---------------------------------------------------------------------
White-NH | 14.27 14.59 14.29 14.3 14.49 14.27 13.79
Black_NH | 11.94 13.85 13.7 14.64 15.05 15.19 15.63
Mex Am | 11.08 13.91 14.04 12.66 16.18 15.96 16.17
Oth | 8.474 10.85 12.65 14.78 15.76 17.46 20.04
|
Total | 12.89 13.92 13.97 14.25 14.9 14.98 15.1
-------------------------------------------------------------------------------
-------------------
Recoded |
Race & | Survey
Ethnicit | Year
y | Total
---------+---------
White-NH | 100
Black_NH | 100
Mex Am | 100
Oth | 100
|
Total | 100
-------------------
Key: row percentage
Pearson:
Uncorrected chi2(18) = 641.3817
Design-based F(12.56, 1369.38)= 0.9810 P = 0.4665
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta race_eth SMK_cat,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,139
Number of PSUs = 214 Population size = 306,306,164
Subpop. no. obs = 20,969
Subpop. size = 141,285,572
Design df = 109
----------------------------------------------------------------------
Recoded |
Race & | Smoking Category
Ethnicity | Never Past Smo Light, 1 Moderate Heavy, 2 Total
----------+-----------------------------------------------------------
White-NH | 52.21 22.87 11.59 9.927 3.401 100
Black_NH | 63.16 10.72 19.85 5.573 .6938 100
Mex Am | 66.09 17.58 14.3 1.639 .3972 100
Oth | 64.84 16.43 12.54 5.205 .9787 100
|
Total | 56.59 20.05 12.95 7.957 2.458 100
----------------------------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(12) = 2623.5293
Design-based F(9.13, 994.81) = 52.8403 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta race_eth AL_cat,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 68,083
Number of PSUs = 214 Population size = 293,445,655
Subpop. no. obs = 18,913
Subpop. size = 128,425,062
Design df = 109
--------------------------------------------------
Recoded |
Race & | Alcohol Use Category
Ethnicity | None-Lig Moderate Heavy Total
----------+---------------------------------------
White-NH | 49.06 33.79 17.15 100
Black_NH | 57.46 30.93 11.61 100
Mex Am | 41.51 29.09 29.4 100
Oth | 57.13 26.3 16.57 100
|
Total | 50.41 31.97 17.62 100
--------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(6) = 1139.8151
Design-based F(4.82, 525.60) = 35.8628 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean bmxbmi,over(race_eth)coeflegend
test _b[c.bmxbmi@1bn.race_eth] = _b[c.bmxbmi@2.race_eth] = _b[c.bmxbmi@3.race_eth] = _b[c.bmxbmi@4.race_eth]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,080
Number of PSUs = 214 Population size = 305,959,182
Subpop. no. obs = 20,910
Subpop. size = 140,938,589
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.bmxbmi@|
race_eth |
White-NH | 28.70752 _b[c.bmxbmi@1bn.race_eth]
Black_NH | 30.70837 _b[c.bmxbmi@2.race_eth]
Mex Am | 30.09838 _b[c.bmxbmi@3.race_eth]
Oth | 27.88915 _b[c.bmxbmi@4.race_eth]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.bmxbmi@1bn.race_eth - c.bmxbmi@2.race_eth = 0
( 2) c.bmxbmi@1bn.race_eth - c.bmxbmi@3.race_eth = 0
( 3) c.bmxbmi@1bn.race_eth - c.bmxbmi@4.race_eth = 0
F( 3, 107) = 102.09
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean hei2015,over(race_eth)coeflegend
test _b[c.hei2015@1bn.race_eth] = _b[c.hei2015@2.race_eth] = _b[c.hei2015@3.race_eth] = _b[c.hei2015@4.race_eth]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,641
Number of PSUs = 214 Population size = 297,338,173
Subpop. no. obs = 19,471
Subpop. size = 132,317,580
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.hei2015@|
race_eth |
White-NH | 52.03715 _b[c.hei2015@1bn.race_eth]
Black_NH | 50.19995 _b[c.hei2015@2.race_eth]
Mex Am | 52.07004 _b[c.hei2015@3.race_eth]
Oth | 54.42493 _b[c.hei2015@4.race_eth]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.hei2015@1bn.race_eth - c.hei2015@2.race_eth = 0
( 2) c.hei2015@1bn.race_eth - c.hei2015@3.race_eth = 0
( 3) c.hei2015@1bn.race_eth - c.hei2015@4.race_eth = 0
F( 3, 107) = 40.40
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean indfmpir,over(race_eth)coeflegend
test _b[c.indfmpir@1bn.race_eth] = _b[c.indfmpir@2.race_eth] = _b[c.indfmpir@3.race_eth] = _b[c.indfmpir@4.race_eth]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,616
Number of PSUs = 214 Population size = 298,070,653
Subpop. no. obs = 19,446
Subpop. size = 133,050,061
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.indfmpir@|
race_eth |
White-NH | 3.358996 _b[c.indfmpir@1bn.race_eth]
Black_NH | 2.37303 _b[c.indfmpir@2.race_eth]
Mex Am | 1.991095 _b[c.indfmpir@3.race_eth]
Oth | 2.72434 _b[c.indfmpir@4.race_eth]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.indfmpir@1bn.race_eth - c.indfmpir@2.race_eth = 0
( 2) c.indfmpir@1bn.race_eth - c.indfmpir@3.race_eth = 0
( 3) c.indfmpir@1bn.race_eth - c.indfmpir@4.race_eth = 0
F( 3, 107) = 166.48
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean ridageyr,over(race_eth)coeflegend
test _b[c.ridageyr@1bn.race_eth] = _b[c.ridageyr@2.race_eth] = _b[c.ridageyr@3.race_eth] = _b[c.ridageyr@4.race_eth]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.ridageyr@|
race_eth |
White-NH | 40.52855 _b[c.ridageyr@1bn.race_eth]
Black_NH | 38.67865 _b[c.ridageyr@2.race_eth]
Mex Am | 36.57998 _b[c.ridageyr@3.race_eth]
Oth | 37.80206 _b[c.ridageyr@4.race_eth]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.ridageyr@1bn.race_eth - c.ridageyr@2.race_eth = 0
( 2) c.ridageyr@1bn.race_eth - c.ridageyr@3.race_eth = 0
( 3) c.ridageyr@1bn.race_eth - c.ridageyr@4.race_eth = 0
F( 3, 107) = 83.77
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta SMK_cat sddsrvyr,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 70,139
Number of PSUs = 214 Population size = 306,306,164
Subpop. no. obs = 20,969
Subpop. size = 141,285,572
Design df = 109
-------------------------------------------------------------------------------
Smoking | Survey Year
Category | 2005-200 2007-200 2009-201 2011-201 2013-201 2015-201 2017-201
---------+---------------------------------------------------------------------
Never | 11.81 13.12 14.03 14.29 15.58 15.51 15.66
Past Smo | 13.47 13.5 13.94 14.38 13.48 15.53 15.72
Light, 1 | 12.63 14.34 13.82 14.84 16.05 14.33 13.99
Moderate | 16.42 16.47 14.28 12.54 13.51 12.86 13.92
Heavy, 2 | 23.38 25.64 12.87 14.97 8.702 8.203 6.224
|
Total | 12.9 13.93 13.98 14.26 14.88 14.97 15.09
-------------------------------------------------------------------------------
-------------------
| Survey
Smoking | Year
Category | Total
---------+---------
Never | 100
Past Smo | 100
Light, 1 | 100
Moderate | 100
Heavy, 2 | 100
|
Total | 100
-------------------
Key: row percentage
Pearson:
Uncorrected chi2(24) = 763.2884
Design-based F(14.81, 1614.66)= 3.1712 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta SMK_cat AL_cat,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 68,033
Number of PSUs = 214 Population size = 293,207,892
Subpop. no. obs = 18,863
Subpop. size = 128,187,300
Design df = 109
--------------------------------------------------
Smoking | Alcohol Use Category
Category | None-Lig Moderate Heavy Total
----------+---------------------------------------
Never | 60.15 28.72 11.12 100
Past Smo | 44.79 37.81 17.39 100
Light, 1 | 30.53 37.35 32.12 100
Moderate | 30.47 34.24 35.29 100
Heavy, 2 | 33.84 24.84 41.32 100
|
Total | 50.45 31.95 17.6 100
--------------------------------------------------
Key: row percentage
Pearson:
Uncorrected chi2(8) = 5797.6928
Design-based F(7.07, 770.16) = 114.6442 P = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean bmxbmi,over(SMK_cat)coeflegend
test _b[c.bmxbmi@1bn.SMK_cat] = _b[c.bmxbmi@2.SMK_cat] = _b[c.bmxbmi@3.SMK_cat] = _b[c.bmxbmi@4.SMK_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,029
Number of PSUs = 214 Population size = 305,720,293
Subpop. no. obs = 20,859
Subpop. size = 140,699,700
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.bmxbmi@|
SMK_cat |
Never | 29.0301 _b[c.bmxbmi@0bn.SMK_cat]
Past Smoker | 29.70642 _b[c.bmxbmi@1.SMK_cat]
Light, 1-.. | 28.34088 _b[c.bmxbmi@2.SMK_cat]
Moderate,.. | 27.907 _b[c.bmxbmi@3.SMK_cat]
Heavy, 21.. | 28.1059 _b[c.bmxbmi@4.SMK_cat]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.bmxbmi@1.SMK_cat - c.bmxbmi@2.SMK_cat = 0
( 2) c.bmxbmi@1.SMK_cat - c.bmxbmi@3.SMK_cat = 0
( 3) c.bmxbmi@1.SMK_cat - c.bmxbmi@4.SMK_cat = 0
F( 3, 107) = 21.87
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean hei2015,over(SMK_cat)coeflegend
test _b[c.hei2015@1bn.SMK_cat] = _b[c.hei2015@2.SMK_cat] = _b[c.hei2015@3.SMK_cat] = _b[c.hei2015@4.SMK_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,598
Number of PSUs = 214 Population size = 297,152,340
Subpop. no. obs = 19,428
Subpop. size = 132,131,748
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.hei2015@|
SMK_cat |
Never | 53.62846 _b[c.hei2015@0bn.SMK_cat]
Past Smoker | 53.79835 _b[c.hei2015@1.SMK_cat]
Light, 1-.. | 48.30659 _b[c.hei2015@2.SMK_cat]
Moderate,.. | 45.43294 _b[c.hei2015@3.SMK_cat]
Heavy, 21.. | 44.67027 _b[c.hei2015@4.SMK_cat]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.hei2015@1.SMK_cat - c.hei2015@2.SMK_cat = 0
( 2) c.hei2015@1.SMK_cat - c.hei2015@3.SMK_cat = 0
( 3) c.hei2015@1.SMK_cat - c.hei2015@4.SMK_cat = 0
F( 3, 107) = 133.35
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean indfmpir,over(SMK_cat)coeflegend
test _b[c.indfmpir@1bn.SMK_cat] = _b[c.indfmpir@2.SMK_cat] = _b[c.indfmpir@3.SMK_cat] = _b[c.indfmpir@4.SMK_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,571
Number of PSUs = 214 Population size = 297,872,577
Subpop. no. obs = 19,401
Subpop. size = 132,851,985
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.indfmpir@|
SMK_cat |
Never | 3.217312 _b[c.indfmpir@0bn.SMK_cat]
Past Smoker | 3.303914 _b[c.indfmpir@1.SMK_cat]
Light, 1-.. | 2.35325 _b[c.indfmpir@2.SMK_cat]
Moderate,.. | 2.364263 _b[c.indfmpir@3.SMK_cat]
Heavy, 21.. | 2.424293 _b[c.indfmpir@4.SMK_cat]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.indfmpir@1.SMK_cat - c.indfmpir@2.SMK_cat = 0
( 2) c.indfmpir@1.SMK_cat - c.indfmpir@3.SMK_cat = 0
( 3) c.indfmpir@1.SMK_cat - c.indfmpir@4.SMK_cat = 0
F( 3, 107) = 118.46
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean ridageyr,over(SMK_cat)coeflegend
test _b[c.ridageyr@1bn.SMK_cat] = _b[c.ridageyr@2.SMK_cat] = _b[c.ridageyr@3.SMK_cat] = _b[c.ridageyr@4.SMK_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,139
Number of PSUs = 214 Population size = 306,306,164
Subpop. no. obs = 20,969
Subpop. size = 141,285,572
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.ridageyr@|
SMK_cat |
Never | 38.67778 _b[c.ridageyr@0bn.SMK_cat]
Past Smoker | 42.73476 _b[c.ridageyr@1.SMK_cat]
Light, 1-.. | 36.94616 _b[c.ridageyr@2.SMK_cat]
Moderate,.. | 40.66477 _b[c.ridageyr@3.SMK_cat]
Heavy, 21.. | 43.69805 _b[c.ridageyr@4.SMK_cat]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.ridageyr@1.SMK_cat - c.ridageyr@2.SMK_cat = 0
( 2) c.ridageyr@1.SMK_cat - c.ridageyr@3.SMK_cat = 0
( 3) c.ridageyr@1.SMK_cat - c.ridageyr@4.SMK_cat = 0
F( 3, 107) = 94.95
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): ta AL_cat sddsrvyr,row percent
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running tabulate on estimation sample)
Number of strata = 105 Number of obs = 68,083
Number of PSUs = 214 Population size = 293,445,655
Subpop. no. obs = 18,913
Subpop. size = 128,425,062
Design df = 109
-------------------------------------------------------------------------------
Alcohol |
Use | Survey Year
Category | 2005-200 2007-200 2009-201 2011-201 2013-201 2015-201 2017-201
---------+---------------------------------------------------------------------
None-Lig | 13.65 14.7 14.04 14.24 15.71 15.71 11.96
Moderate | 12.43 12.54 13.81 13.69 15.46 15.66 16.41
Heavy | 13.09 14.88 15.23 15.72 13.83 14.11 13.13
|
Total | 13.16 14.04 14.17 14.32 15.3 15.41 13.59
-------------------------------------------------------------------------------
-------------------
Alcohol | Survey
Use | Year
Category | Total
---------+---------
None-Lig | 100
Moderate | 100
Heavy | 100
|
Total | 100
-------------------
Key: row percentage
Pearson:
Uncorrected chi2(12) = 335.7588
Design-based F(9.61, 1047.31)= 2.3687 P = 0.0100
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean bmxbmi,over(AL_cat)coeflegend
test _b[c.bmxbmi@0bn.AL_cat] = _b[c.bmxbmi@1bn.AL_cat] = _b[c.bmxbmi@2.AL_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 67,991
Number of PSUs = 214 Population size = 292,944,878
Subpop. no. obs = 18,821
Subpop. size = 127,924,286
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.bmxbmi@|
AL_cat |
None-Light | 28.95634 _b[c.bmxbmi@0bn.AL_cat]
Moderate | 28.58665 _b[c.bmxbmi@1.AL_cat]
Heavy | 29.0759 _b[c.bmxbmi@2.AL_cat]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.bmxbmi@0bn.AL_cat - c.bmxbmi@1.AL_cat = 0
( 2) c.bmxbmi@0bn.AL_cat - c.bmxbmi@2.AL_cat = 0
F( 2, 108) = 4.11
Prob > F = 0.0191
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean hei2015,over(AL_cat)coeflegend
test _b[c.hei2015@0bn.AL_cat] = _b[c.hei2015@1bn.AL_cat] = _b[c.hei2015@2.AL_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 66,687
Number of PSUs = 214 Population size = 285,100,435
Subpop. no. obs = 17,517
Subpop. size = 120,079,843
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.hei2015@|
AL_cat |
None-Light | 53.55496 _b[c.hei2015@0bn.AL_cat]
Moderate | 52.1885 _b[c.hei2015@1.AL_cat]
Heavy | 49.02855 _b[c.hei2015@2.AL_cat]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.hei2015@0bn.AL_cat - c.hei2015@1.AL_cat = 0
( 2) c.hei2015@0bn.AL_cat - c.hei2015@2.AL_cat = 0
F( 2, 108) = 70.07
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean indfmpir,over(AL_cat)coeflegend
test _b[c.indfmpir@0bn.AL_cat] = _b[c.indfmpir@1bn.AL_cat] = _b[c.indfmpir@2.AL_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 66,702
Number of PSUs = 214 Population size = 286,022,554
Subpop. no. obs = 17,532
Subpop. size = 121,001,962
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.indfmpir@|
AL_cat |
None-Light | 3.183195 _b[c.indfmpir@0bn.AL_cat]
Moderate | 3.198428 _b[c.indfmpir@1.AL_cat]
Heavy | 2.54964 _b[c.indfmpir@2.AL_cat]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.indfmpir@0bn.AL_cat - c.indfmpir@1.AL_cat = 0
( 2) c.indfmpir@0bn.AL_cat - c.indfmpir@2.AL_cat = 0
F( 2, 108) = 98.06
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean ridageyr,over(AL_cat)coeflegend
test _b[c.ridageyr@0bn.AL_cat] = _b[c.ridageyr@1bn.AL_cat] = _b[c.ridageyr@2.AL_cat]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,083
Number of PSUs = 214 Population size = 293,445,655
Subpop. no. obs = 18,913
Subpop. size = 128,425,062
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.ridageyr@|
AL_cat |
None-Light | 40.94249 _b[c.ridageyr@0bn.AL_cat]
Moderate | 38.36032 _b[c.ridageyr@1.AL_cat]
Heavy | 35.29581 _b[c.ridageyr@2.AL_cat]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.ridageyr@0bn.AL_cat - c.ridageyr@1.AL_cat = 0
( 2) c.ridageyr@0bn.AL_cat - c.ridageyr@2.AL_cat = 0
F( 2, 108) = 156.48
Prob > F = 0.0000
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean bmxbmi,over(sddsrvyr)coeflegend
test _b[c.bmxbmi@4bn.sddsrvyr] = _b[c.bmxbmi@5.sddsrvyr] = _b[c.bmxbmi@6.sddsrvyr] = _b[c.bmxbmi@7.sddsrvyr] = _b[c.bmxbmi@8.sddsrvyr] = _b[c.bmxbmi@9.sddsrvyr] = _b[c.bmxbmi@10.sddsrvyr]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,080
Number of PSUs = 214 Population size = 305,959,182
Subpop. no. obs = 20,910
Subpop. size = 140,938,589
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.bmxbmi@|
sddsrvyr |
2005-2006 | 28.37497 _b[c.bmxbmi@4bn.sddsrvyr]
2007-2008 | 28.50392 _b[c.bmxbmi@5.sddsrvyr]
2009-2010 | 28.55635 _b[c.bmxbmi@6.sddsrvyr]
2011-2012 | 28.79085 _b[c.bmxbmi@7.sddsrvyr]
2013-2014 | 29.05577 _b[c.bmxbmi@8.sddsrvyr]
2015-2016 | 29.40003 _b[c.bmxbmi@9.sddsrvyr]
2017-2018 | 29.90189 _b[c.bmxbmi@10.sddsrvyr]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.bmxbmi@4bn.sddsrvyr - c.bmxbmi@5.sddsrvyr = 0
( 2) c.bmxbmi@4bn.sddsrvyr - c.bmxbmi@6.sddsrvyr = 0
( 3) c.bmxbmi@4bn.sddsrvyr - c.bmxbmi@7.sddsrvyr = 0
( 4) c.bmxbmi@4bn.sddsrvyr - c.bmxbmi@8.sddsrvyr = 0
( 5) c.bmxbmi@4bn.sddsrvyr - c.bmxbmi@9.sddsrvyr = 0
( 6) c.bmxbmi@4bn.sddsrvyr - c.bmxbmi@10.sddsrvyr = 0
F( 6, 104) = 3.50
Prob > F = 0.0034
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean hei2015,over(sddsrvyr)coeflegend
test _b[c.hei2015@4bn.sddsrvyr] = _b[c.hei2015@5.sddsrvyr] = _b[c.hei2015@6.sddsrvyr] = _b[c.hei2015@7.sddsrvyr] = _b[c.hei2015@8.sddsrvyr] = _b[c.hei2015@9.sddsrvyr] = _b[c.hei2015@10.sddsrvyr]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,641
Number of PSUs = 214 Population size = 297,338,173
Subpop. no. obs = 19,471
Subpop. size = 132,317,580
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.hei2015@|
sddsrvyr |
2005-2006 | 50.92463 _b[c.hei2015@4bn.sddsrvyr]
2007-2008 | 51.55643 _b[c.hei2015@5.sddsrvyr]
2009-2010 | 53.01021 _b[c.hei2015@6.sddsrvyr]
2011-2012 | 53.21391 _b[c.hei2015@7.sddsrvyr]
2013-2014 | 52.82185 _b[c.hei2015@8.sddsrvyr]
2015-2016 | 52.4576 _b[c.hei2015@9.sddsrvyr]
2017-2018 | 51.00498 _b[c.hei2015@10.sddsrvyr]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.hei2015@4bn.sddsrvyr - c.hei2015@5.sddsrvyr = 0
( 2) c.hei2015@4bn.sddsrvyr - c.hei2015@6.sddsrvyr = 0
( 3) c.hei2015@4bn.sddsrvyr - c.hei2015@7.sddsrvyr = 0
( 4) c.hei2015@4bn.sddsrvyr - c.hei2015@8.sddsrvyr = 0
( 5) c.hei2015@4bn.sddsrvyr - c.hei2015@9.sddsrvyr = 0
( 6) c.hei2015@4bn.sddsrvyr - c.hei2015@10.sddsrvyr = 0
F( 6, 104) = 3.07
Prob > F = 0.0083
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean indfmpir,over(sddsrvyr)coeflegend
test _b[c.indfmpir@4bn.sddsrvyr] = _b[c.indfmpir@5.sddsrvyr] = _b[c.indfmpir@6.sddsrvyr] = _b[c.indfmpir@7.sddsrvyr] = _b[c.indfmpir@8.sddsrvyr] = _b[c.indfmpir@9.sddsrvyr] = _b[c.indfmpir@10.sddsrvyr]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 68,616
Number of PSUs = 214 Population size = 298,070,653
Subpop. no. obs = 19,446
Subpop. size = 133,050,061
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.indfmpir@|
sddsrvyr |
2005-2006 | 3.253349 _b[c.indfmpir@4bn.sddsrvyr]
2007-2008 | 3.124412 _b[c.indfmpir@5.sddsrvyr]
2009-2010 | 3.017768 _b[c.indfmpir@6.sddsrvyr]
2011-2012 | 2.88986 _b[c.indfmpir@7.sddsrvyr]
2013-2014 | 2.91586 _b[c.indfmpir@8.sddsrvyr]
2015-2016 | 3.020149 _b[c.indfmpir@9.sddsrvyr]
2017-2018 | 3.043265 _b[c.indfmpir@10.sddsrvyr]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.indfmpir@4bn.sddsrvyr - c.indfmpir@5.sddsrvyr = 0
( 2) c.indfmpir@4bn.sddsrvyr - c.indfmpir@6.sddsrvyr = 0
( 3) c.indfmpir@4bn.sddsrvyr - c.indfmpir@7.sddsrvyr = 0
( 4) c.indfmpir@4bn.sddsrvyr - c.indfmpir@8.sddsrvyr = 0
( 5) c.indfmpir@4bn.sddsrvyr - c.indfmpir@9.sddsrvyr = 0
( 6) c.indfmpir@4bn.sddsrvyr - c.indfmpir@10.sddsrvyr = 0
F( 6, 104) = 2.05
Prob > F = 0.0659
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if include==1): mean ridageyr,over(sddsrvyr)coeflegend
test _b[c.ridageyr@4bn.sddsrvyr] = _b[c.ridageyr@5.sddsrvyr] = _b[c.ridageyr@6.sddsrvyr] = _b[c.ridageyr@7.sddsrvyr] = _b[c.ridageyr@8.sddsrvyr] = _b[c.ridageyr@9.sddsrvyr] = _b[c.ridageyr@10.sddsrvyr]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 105 Number of obs = 70,190
Number of PSUs = 214 Population size = 306,545,053
Subpop. no. obs = 21,020
Subpop. size = 141,524,461
Design df = 109
------------------------------------------------------------------------------
| Mean Legend
-------------+----------------------------------------------------------------
c.ridageyr@|
sddsrvyr |
2005-2006 | 39.5257 _b[c.ridageyr@4bn.sddsrvyr]
2007-2008 | 39.54379 _b[c.ridageyr@5.sddsrvyr]
2009-2010 | 39.65777 _b[c.ridageyr@6.sddsrvyr]
2011-2012 | 39.55552 _b[c.ridageyr@7.sddsrvyr]
2013-2014 | 39.26981 _b[c.ridageyr@8.sddsrvyr]
2015-2016 | 39.66108 _b[c.ridageyr@9.sddsrvyr]
2017-2018 | 39.62325 _b[c.ridageyr@10.sddsrvyr]
------------------------------------------------------------------------------
Adjusted Wald test
( 1) c.ridageyr@4bn.sddsrvyr - c.ridageyr@5.sddsrvyr = 0
( 2) c.ridageyr@4bn.sddsrvyr - c.ridageyr@6.sddsrvyr = 0
( 3) c.ridageyr@4bn.sddsrvyr - c.ridageyr@7.sddsrvyr = 0
( 4) c.ridageyr@4bn.sddsrvyr - c.ridageyr@8.sddsrvyr = 0
( 5) c.ridageyr@4bn.sddsrvyr - c.ridageyr@9.sddsrvyr = 0
( 6) c.ridageyr@4bn.sddsrvyr - c.ridageyr@10.sddsrvyr = 0
F( 6, 104) = 0.17
Prob > F = 0.9832
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
pwcorr indfmpir bmxbmi hei2015 ridageyr if include==1 [w=wtmec12yr]
pweight: wtmec12yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
(analytic weights assumed)
| indfmpir bmxbmi hei2015 ridageyr
-------------+------------------------------------
indfmpir | 1.0000
bmxbmi | -0.0553 1.0000
hei2015 | 0.1884 -0.1198 1.0000
ridageyr | 0.2230 0.1221 0.1530 1.0000