A: Comparison of exposures and outcomes with possible confounders

1: associations between the exposure variable (food assistance) and independent variables

Among food-secure boys.

a: Cross-tabulate food assistance with categorical covariates

use "NHANES0708_all.dta"

svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)

svy, subpop(if subpop2==1 & male==1 & foodinsec==0): ta race_eth food_any,col percent
svy, subpop(if subpop2==1 & male==1 & foodinsec==0): ta hinsur food_any,col percent
svy, subpop(if subpop2==1 & male==1 & foodinsec==0): ta age_3cat food_any,col percent
      pweight: wtmec2yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

(running tabulate on estimation sample)

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16

-------------------------------
RECODE of |
ridreth1  |
(Race/Eth |
nicity -  |      food_any      
Recode)   |     0      1  Total
----------+--------------------
 White-NH | 71.47  44.43   52.6
 Black-NH | 2.878  21.86  16.13
   Mex Am | 13.35  22.75  19.91
      Oth | 12.31  10.96  11.36
          | 
    Total |   100    100    100
-------------------------------
  Key:  column percentage

  Pearson:
    Uncorrected   chi2(3)         =  874.1729
    Design-based  F(1.99, 31.84)  =    6.5988     P = 0.0041

(running tabulate on estimation sample)

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16

-------------------------------
          |      food_any      
   hinsur |     0      1  Total
----------+--------------------
        0 | 41.58  17.68   24.9
        1 | 24.75  68.74  55.45
        2 | 33.66  13.58  19.65
          | 
    Total |   100    100    100
-------------------------------
  Key:  column percentage

  Pearson:
    Uncorrected   chi2(2)         = 1676.3792
    Design-based  F(1.99, 31.87)  =    9.5479     P = 0.0006

(running tabulate on estimation sample)

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16

-------------------------------
RECODE of |
ridageyr  |
(Age at   |
Screening |
Adjudicat |
ed -      |      food_any      
Recode)   |     0      1  Total
----------+--------------------
   4 to 7 | 42.79  32.92   35.9
  8 to 11 | 21.65   32.2  29.02
 12 to 17 | 35.55  34.88  35.08
          | 
    Total |   100    100    100
-------------------------------
  Key:  column percentage

  Pearson:
    Uncorrected   chi2(2)         =  140.4143
    Design-based  F(1.98, 31.66)  =    1.6075     P = 0.2164

b: Calculate mean values of continuous covariates within each category of food assistance

Formally compare these mean values using the adjusted Wald test. Example: age (ridageyr).

use "NHANES0708_all.dta"

svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)

svy, subpop(if subpop2==1 & male==1 & foodinsec==0): mean ridageyr,over(food_any)

test _b[c.ridageyr@0bn.food_any] =_b[c.ridageyr@1.food_any]
      pweight: wtmec2yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

(running mean on estimation sample)

Survey: Mean estimation

Number of strata =      16             Number of obs   =       10,149
Number of PSUs   =      32             Population size =  297,136,095
                                       Subpop. no. obs =          439
                                       Subpop. size    = 8,131,107.05
                                       Design df       =           16

---------------------------------------------------------------------
                    |             Linearized
                    |       Mean   Std. Err.     [95% Conf. Interval]
--------------------+------------------------------------------------
c.ridageyr@food_any |
                 0  |   9.357223   .6614132       7.95509    10.75936
                 1  |   9.680168   .2458789      9.158928    10.20141
---------------------------------------------------------------------


Adjusted Wald test

 ( 1)  c.ridageyr@0bn.food_any - c.ridageyr@1.food_any = 0

       F(  1,    16) =    0.21
            Prob > F =    0.6517

2 Calculate associations between the dependent variable (high waist circumference [wccata]) and independent variables

Among food secure boys

First, conduct descriptive analysis (a and b), then crude regression analysis (c).

a: Cross-tabulate high waist circumference with categorical independent variables (exposure and covariates)

Test these associations for each variable using the Design-based F test (survey analysis equivalent to the chi-square test for independence).

use "NHANES0708_all.dta"

svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)

svy, subpop(if subpop2==1 & male==1 & foodinsec==0): ta food_any wccata,col percent
svy, subpop(if subpop2==1 & male==1 & foodinsec==0): ta race_eth wccata,col percent
svy, subpop(if subpop2==1 & male==1 & foodinsec==0): ta hinsur wccata,col percent
svy, subpop(if subpop2==1 & male==1 & foodinsec==0): ta pr_age wccata,col percent
      pweight: wtmec2yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

(running tabulate on estimation sample)

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16

-------------------------------
          |       wccata       
 food_any |     0      1  Total
----------+--------------------
        0 | 32.34  20.55   30.2
        1 | 67.66  79.45   69.8
          | 
    Total |   100    100    100
-------------------------------
  Key:  column percentage

  Pearson:
    Uncorrected   chi2(1)         =   99.3496
    Design-based  F(1, 16)        =    2.9122     P = 0.1072

(running tabulate on estimation sample)

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16

-------------------------------
RECODE of |
ridreth1  |
(Race/Eth |
nicity -  |       wccata       
Recode)   |     0      1  Total
----------+--------------------
 White-NH |  52.3  53.95   52.6
 Black-NH | 18.43  5.747  16.13
   Mex Am | 17.74  29.71  19.91
      Oth | 11.53  10.59  11.36
          | 
    Total |   100    100    100
-------------------------------
  Key:  column percentage

  Pearson:
    Uncorrected   chi2(3)         =  260.4437
    Design-based  F(2.65, 42.45)  =    3.9544     P = 0.0175

(running tabulate on estimation sample)

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16

-------------------------------
          |       wccata       
   hinsur |     0      1  Total
----------+--------------------
        0 | 25.93  20.27   24.9
        1 | 55.11  56.98  55.45
        2 | 18.96  22.76  19.65
          | 
    Total |   100    100    100
-------------------------------
  Key:  column percentage

  Pearson:
    Uncorrected   chi2(2)         =   31.3658
    Design-based  F(1.93, 30.87)  =    0.3659     P = 0.6891

(running tabulate on estimation sample)

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16

-------------------------------
RECODE of |
dmdhrage  |
(HH Ref   |
Person    |       wccata       
Age)      |     0      1  Total
----------+--------------------
        0 |  37.3  38.42   37.5
        1 | 21.07   9.96  19.06
        2 | 41.63  51.62  43.44
          | 
    Total |   100    100    100
-------------------------------
  Key:  column percentage

  Pearson:
    Uncorrected   chi2(2)         =  132.5719
    Design-based  F(1.83, 29.30)  =    1.8265     P = 0.1811

b: Calculate mean values of continuous independent variables (covariates) within each category of high waist circumference, among food secure boys.

use "NHANES0708_all.dta"

svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)

svy, subpop(if subpop2==1 & male==1 & foodinsec==0): mean ridageyr,over(wccata)coeflegend
svy, subpop(if subpop2==1 & male==1 & foodinsec==0): mean ridageyr,over(wccata)

test _b[c.ridageyr@0bn.wccata] =_b[c.ridageyr@1.wccata]
      pweight: wtmec2yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

(running mean on estimation sample)

Survey: Mean estimation

Number of strata =      16      Number of obs   =       10,149
Number of PSUs   =      32      Population size =  297,136,095
                                Subpop. no. obs =          439
                                Subpop. size    = 8,131,107.05
                                Design df       =           16

------------------------------------------------------------------------------
             |       Mean  Legend
-------------+----------------------------------------------------------------
  c.ridageyr@|
      wccata |
          0  |   9.352032  _b[c.ridageyr@0bn.wccata]
          1  |   10.62444  _b[c.ridageyr@1.wccata]
------------------------------------------------------------------------------

(running mean on estimation sample)

Survey: Mean estimation

Number of strata =      16           Number of obs   =       10,149
Number of PSUs   =      32           Population size =  297,136,095
                                     Subpop. no. obs =          439
                                     Subpop. size    = 8,131,107.05
                                     Design df       =           16

-------------------------------------------------------------------
                  |             Linearized
                  |       Mean   Std. Err.     [95% Conf. Interval]
------------------+------------------------------------------------
c.ridageyr@wccata |
               0  |   9.352032   .3012292      8.713455     9.99061
               1  |   10.62444   .5600746      9.437139    11.81175
-------------------------------------------------------------------


Adjusted Wald test

 ( 1)  c.ridageyr@0bn.wccata - c.ridageyr@1.wccata = 0

       F(  1,    16) =    4.29
            Prob > F =    0.0549

c: Using simple logistic regression models, calculate the crude odds ratios (OR) for the associations between each independent variable and waist circumference among food secure boys.

Descriptive analysis provides information about the absolute prevalence or means of characteristics among participants with and without the outcome. Calculation of crude odds ratios is also an important first step to regression analysis and provides initial ORs as you build your multivariable models. For this exercise, include child age as a linear term. We will work with this variable more in Exercise E9.

Food Assistance

use "NHANES0708_all.dta"

svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)

xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any,or
      pweight: wtmec2yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.food_any        _Ifood_any_0-1      (naturally coded; _Ifood_any_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16
                                              F(   1,     16)   =         2.85
                                              Prob > F          =       0.1107

------------------------------------------------------------------------------
             |             Linearized
      wccata |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 |   .6142502   .3638321     1.69   0.111    -.1570394     1.38554
       _cons |  -1.961632   .3808709    -5.15   0.000    -2.769042   -1.154222
------------------------------------------------------------------------------

i.food_any        _Ifood_any_0-1      (naturally coded; _Ifood_any_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16
                                              F(   1,     16)   =         2.85
                                              Prob > F          =       0.1107

------------------------------------------------------------------------------
             |             Linearized
      wccata | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 |    1.84827     .67246     1.69   0.111     .8546704    3.996983
       _cons |   .1406287   .0535614    -5.15   0.000     .0627221    .3153029
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.

Race/Ethnicity

use "NHANES0708_all.dta"

svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)

xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.race_eth
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.race_eth,or
#xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logistic wccata i.race_eth
      pweight: wtmec2yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16
                                              F(   3,     14)   =         4.60
                                              Prob > F          =       0.0193

------------------------------------------------------------------------------
             |             Linearized
      wccata |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Irace_eth_2 |  -1.196125   .4327867    -2.76   0.014    -2.113592   -.2786579
_Irace_eth_3 |   .4845906    .312049     1.55   0.140    -.1769237    1.146105
_Irace_eth_4 |  -.1160506   .4295402    -0.27   0.790    -1.026635    .7945338
       _cons |  -1.477006   .2580373    -5.72   0.000    -2.024021   -.9299918
------------------------------------------------------------------------------

i.race_eth        _Irace_eth_1-4      (naturally coded; _Irace_eth_1 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16
                                              F(   3,     14)   =         4.60
                                              Prob > F          =       0.0193

------------------------------------------------------------------------------
             |             Linearized
      wccata | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Irace_eth_2 |   .3023637    .130859    -2.76   0.014     .1208033    .7567987
_Irace_eth_3 |    1.62351   .5066148     1.55   0.140     .8378437    3.145916
_Irace_eth_4 |   .8904302   .3824755    -0.27   0.790     .3582103    2.213409
       _cons |   .2283202   .0589151    -5.72   0.000     .1321231    .3945569
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.

Unknown #command

Health Insurance (hinsur)

use "NHANES0708_all.dta"

svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)

xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.hinsur
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.hinsur,or
#xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logistic wccata i.hinsur
      pweight: wtmec2yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.hinsur          _Ihinsur_0-2        (naturally coded; _Ihinsur_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16
                                              F(   2,     15)   =         0.40
                                              Prob > F          =       0.6769

------------------------------------------------------------------------------
             |             Linearized
      wccata |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  _Ihinsur_1 |   .2795074   .3948765     0.71   0.489    -.5575933    1.116608
  _Ihinsur_2 |   .4288281   .4975491     0.86   0.401     -.625929    1.483585
       _cons |   -1.75432   .2856827    -6.14   0.000    -2.359941     -1.1487
------------------------------------------------------------------------------

i.hinsur          _Ihinsur_0-2        (naturally coded; _Ihinsur_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16
                                              F(   2,     15)   =         0.40
                                              Prob > F          =       0.6769

------------------------------------------------------------------------------
             |             Linearized
      wccata | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  _Ihinsur_1 |   1.322478   .5222155     0.71   0.489     .5725855    3.054476
  _Ihinsur_2 |   1.535457   .7639653     0.86   0.401     .5347644    4.408723
       _cons |   .1730248   .0494302    -6.14   0.000     .0944258    .3170487
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.

Unknown #command

Primary Respondant Age Category (pr_age)

use "NHANES0708_all.dta"

svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)

xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.pr_age
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.pr_age,or
#xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logistic wccata i.pr_age
      pweight: wtmec2yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

i.pr_age          _Ipr_age_0-2        (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16
                                              F(   2,     15)   =         2.34
                                              Prob > F          =       0.1306

------------------------------------------------------------------------------
             |             Linearized
      wccata |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  _Ipr_age_1 |  -.7789516   .5110973    -1.52   0.147     -1.86243    .3045263
  _Ipr_age_2 |   .1851521   .3738566     0.50   0.627    -.6073885    .9776927
       _cons |  -1.478291   .3198481    -4.62   0.000    -2.156339   -.8002432
------------------------------------------------------------------------------

i.pr_age          _Ipr_age_0-2        (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16
                                              F(   2,     15)   =         2.34
                                              Prob > F          =       0.1306

------------------------------------------------------------------------------
             |             Linearized
      wccata | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  _Ipr_age_1 |   .4588868   .2345358    -1.52   0.147     .1552949    1.355982
  _Ipr_age_2 |   1.203401   .4498996     0.50   0.627     .5447717    2.658316
       _cons |   .2280271    .072934    -4.62   0.000     .1157481    .4492197
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.

Unknown #command

Age

use "NHANES0708_all.dta"

svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)

xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata ridageyr
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata ridageyr,or
#xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logistic wccata ridageyr
      pweight: wtmec2yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16
                                              F(   1,     16)   =         4.81
                                              Prob > F          =       0.0434

------------------------------------------------------------------------------
             |             Linearized
      wccata |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    ridageyr |   .0816693   .0372445     2.19   0.043     .0027145    .1606241
       _cons |  -2.323536   .3852478    -6.03   0.000    -3.140225   -1.506847
------------------------------------------------------------------------------

(running logit on estimation sample)

Survey: Logistic regression

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16
                                              F(   1,     16)   =         4.81
                                              Prob > F          =       0.0434

------------------------------------------------------------------------------
             |             Linearized
      wccata | Odds Ratio   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    ridageyr |   1.085097   .0404139     2.19   0.043     1.002718    1.174243
       _cons |   .0979267   .0377261    -6.03   0.000     .0432731    .2216076
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.

Unknown #command

B

4 Cross-tabulate each pair of the three categorical covariates among food secure boys

race/eth vs health insurance

use "NHANES0708_all.dta"

svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
svy, subpop(if subpop2==1 & male==1 & foodinsec==0): ta race_eth hinsur,row percent
      pweight: wtmec2yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

(running tabulate on estimation sample)

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16

--------------------------------------
RECODE of |
ridreth1  |
(Race/Eth |
nicity -  |           hinsur          
Recode)   |     0      1      2  Total
----------+---------------------------
 White-NH | 30.12  53.16  16.73    100
 Black-NH | 24.36  65.69  9.954    100
   Mex Am | 19.09  46.07  34.84    100
      Oth | 11.72  67.97   20.3    100
          | 
    Total |  24.9  55.45  19.65    100
--------------------------------------
  Key:  row percentage

  Pearson:
    Uncorrected   chi2(6)         =  606.0362
    Design-based  F(3.94, 62.98)  =    2.8843     P = 0.0301

race/eth vs respondant age

use "NHANES0708_all.dta"

svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
svy, subpop(if subpop2==1 & male==1 & foodinsec==0): ta race_eth pr_age,row percent
      pweight: wtmec2yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

(running tabulate on estimation sample)

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16

--------------------------------------
RECODE of |
ridreth1  |
(Race/Eth | RECODE of dmdhrage (HH Ref
nicity -  |        Person Age)        
Recode)   |     0      1      2  Total
----------+---------------------------
 White-NH | 37.43  15.75  46.81    100
 Black-NH | 32.33  27.53  40.14    100
   Mex Am | 45.04  19.25  35.72    100
      Oth | 31.94  21.99  46.07    100
          | 
    Total |  37.5  19.06  43.44    100
--------------------------------------
  Key:  row percentage

  Pearson:
    Uncorrected   chi2(6)         =  196.9939
    Design-based  F(3.74, 59.89)  =    0.8971     P = 0.4661

health insurance vs respondant age

use "NHANES0708_all.dta"

svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
svy, subpop(if subpop2==1 & male==1 & foodinsec==0): ta hinsur pr_age,row percent
      pweight: wtmec2yr
          VCE: linearized
  Single unit: missing
     Strata 1: sdmvstra
         SU 1: sdmvpsu
        FPC 1: <zero>

(running tabulate on estimation sample)

Number of strata   =        16                Number of obs     =       10,149
Number of PSUs     =        32                Population size   =  297,136,095
                                              Subpop. no. obs   =          439
                                              Subpop. size      = 8,131,107.05
                                              Design df         =           16

--------------------------------------
          | RECODE of dmdhrage (HH Ref
          |        Person Age)        
   hinsur |     0      1      2  Total
----------+---------------------------
        0 | 42.14   14.7  43.16    100
        1 | 36.48  24.15  39.37    100
        2 | 34.52  10.19  55.29    100
          | 
    Total |  37.5  19.06  43.44    100
--------------------------------------
  Key:  row percentage

  Pearson:
    Uncorrected   chi2(4)         =  290.7384
    Design-based  F(2.84, 45.49)  =    1.7305     P = 0.1764