use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_merged.dta"
bysort age_instudy: su ridageyr
ta age_instudy
-> age_instudy = No
Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
ridageyr | 7,527 40.95682 24.9619 0 80
-------------------------------------------------------------------------------
-> age_instudy = Yes
Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
ridageyr | 2,622 10.03127 3.957492 4 17
Meets Age |
Inclusion |
Criteria | Freq. Percent Cum.
------------+-----------------------------------
No | 7,527 74.16 74.16
Yes | 2,622 25.84 100.00
------------+-----------------------------------
Total | 10,149 100.00
Repeating the above analysis with the dataset provided in class:
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
bysort age_instudy: su ridageyr
ta age_instudy
-> age_instudy = 0
Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
ridageyr | 7,527 40.95682 24.9619 0 80
-------------------------------------------------------------------------------
-> age_instudy = 1
Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
ridageyr | 2,622 10.03127 3.957492 4 17
RECODE of |
ridageyr |
(Age at |
Screening |
Adjudicated |
- Recode) | Freq. Percent Cum.
------------+-----------------------------------
0 | 7,527 74.16 74.16
1 | 2,622 25.84 100.00
------------+-----------------------------------
Total | 10,149 100.00
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_merged.dta"
bysort fpl_instudy: su indfmpir
ta fpl_instudy
-> fpl_instudy = No
Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
indfmpir | 4,262 3.746244 1.090281 2.01 5
-------------------------------------------------------------------------------
-> fpl_instudy = Yes
Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
indfmpir | 4,993 1.036519 .5050164 0 2
-------------------------------------------------------------------------------
-> fpl_instudy = .
Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
indfmpir | 0
Meets |
Income |
Inclusion |
Criteria | Freq. Percent Cum.
------------+-----------------------------------
No | 4,262 46.05 46.05
Yes | 4,993 53.95 100.00
------------+-----------------------------------
Total | 9,255 100.00
Repeating the above analysis with the dataset provided in class:
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
bysort fpl_instudy: su indfmpir
ta fpl_instudy
-> fpl_instudy = 0
Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
indfmpir | 4,262 3.746244 1.090281 2.01 5
-------------------------------------------------------------------------------
-> fpl_instudy = 1
Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
indfmpir | 4,993 1.036519 .5050164 0 2
RECODE of |
indfmpir |
(Ratio of |
family |
income to |
poverty) | Freq. Percent Cum.
------------+-----------------------------------
0 | 5,156 50.80 50.80
1 | 4,993 49.20 100.00
------------+-----------------------------------
Total | 10,149 100.00
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_merged.dta"
gen subpop1=0
replace subpop1=1 if age_instudy==1 & fpl_instudy==1
ta subpop1
label define subpop1 0 "No" 1 "Yes"
label values subpop1 subpop1
label variable subpop1 "Meets Inclusion Criteria"
ta subpop1
save,replace
variable subpop1 already defined
r(110);
end of do-file
r(110);
Repeating the above analysis with the dataset provided in class:
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
gen subpop1=0
replace subpop1=1 if age_instudy==1 & fpl_instudy==1
ta subpop1
label define subpop1 0 "No" 1 "Yes"
label values subpop1 subpop1
label variable subpop1 "Meets Inclusion Criteria"
ta subpop1
save,replace
variable subpop1 already defined
r(110);
end of do-file
r(110);
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_merged.dta"
gen miss_dv=missing(bmxbmi, bmxwaist)
ta subpop1 miss_dv
label define miss_dv 0 "No" 1 "Yes"
label values miss_dv miss_dv
label variable miss_dv "Missing Dependent Variables"
ta subpop1 miss_dv
ta miss_dv
save,replace
variable miss_dv already defined
r(110);
end of do-file
r(110);
Repeating the above analysis with the dataset provided in class:
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
gen miss_dv=missing(bmxbmi, bmxwaist)
ta subpop1 miss_dv
label define miss_dv 0 "No" 1 "Yes"
label values miss_dv miss_dv
label variable miss_dv "Missing Dependent Variables"
ta subpop1 miss_dv
save,replace
variable miss_dv already defined
r(110);
end of do-file
r(110);
The data file from E4 does not have the variables necessary (food_stamp, WIC, school_meal, foodinsec).
Repeating the above analysis with the dataset provided in class:
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
gen miss_iv=missing(food_stamp, WIC, school_meal, foodinsec)
ta food_stamp miss_iv,m
ta WIC miss_iv,m
ta school_meal miss_iv,m
ta foodinsec miss_iv,m
label define miss_iv 0 "No" 1 "Yes"
label values miss_iv miss_iv
label variable miss_iv "Missing Independent Variables"
ta subpop1 miss_iv
save,replace
variable miss_iv already defined
r(110);
end of do-file
r(110);
Continuing on using only the dataset provided in class:
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
gen subpop2=0
replace subpop2=1 if subpop1==1 & miss_iv==0 & miss_dv==0
ta subpop2
label define subpop2 0 "No" 1 "Yes"
label values subpop2 subpop2
label variable subpop2 "Meets Inclusion Criteria & No Missing values"
ta subpop2
save,replace
variable subpop2 already defined
r(110);
end of do-file
r(110);
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
ta fpl_instudy age_instudy
RECODE of |
indfmpir |
(Ratio of | RECODE of ridageyr
family | (Age at Screening
income to | Adjudicated - Recode)
poverty) | 0 1 | Total
-----------+----------------------+----------
0 | 3,965 1,191 | 5,156
1 | 3,562 1,431 | 4,993
-----------+----------------------+----------
Total | 7,527 2,622 | 10,149
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
gen miss_bmi=missing(bmxbmi)
ta subpop1 miss_bmi
Meets |
Inclusion | miss_bmi
Criteria | 0 1 | Total
-----------+----------------------+----------
No | 7,473 1,245 | 8,718
Yes | 1,388 43 | 1,431
-----------+----------------------+----------
Total | 8,861 1,288 | 10,149
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
gen miss_bmi=missing(bmxbmi)
gen miss_waist=missing(bmxwaist)
ta subpop1 miss_waist if miss_bmi==0
Meets |
Inclusion | miss_waist
Criteria | 0 1 | Total
-----------+----------------------+----------
No | 7,164 309 | 7,473
Yes | 1,358 30 | 1,388
-----------+----------------------+----------
Total | 8,522 339 | 8,861
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
ta miss_iv miss_dv if subpop1==1
Missing | Missing Dependent
Dependent | Variables
Variables | No Yes | Total
-----------+----------------------+----------
No | 1,321 67 | 1,388
Yes | 37 6 | 43
-----------+----------------------+----------
Total | 1,358 73 | 1,431
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
ta fsdch if subpop2==1
Child food |
security |
category | Freq. Percent Cum.
------------+-----------------------------------
1 | 867 65.63 65.63
2 | 162 12.26 77.90
3 | 251 19.00 96.90
4 | 41 3.10 100.00
------------+-----------------------------------
Total | 1,321 100.00
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
ta ridageyr if subpop2==1
ta riagendr if subpop2==1
Age at |
Screening |
Adjudicated |
- Recode | Freq. Percent Cum.
------------+-----------------------------------
4 | 124 9.39 9.39
5 | 111 8.40 17.79
6 | 107 8.10 25.89
7 | 104 7.87 33.76
8 | 121 9.16 42.92
9 | 112 8.48 51.40
10 | 108 8.18 59.58
11 | 105 7.95 67.52
12 | 84 6.36 73.88
13 | 69 5.22 79.11
14 | 84 6.36 85.47
15 | 71 5.37 90.84
16 | 70 5.30 96.14
17 | 51 3.86 100.00
------------+-----------------------------------
Total | 1,321 100.00
Gender | Freq. Percent Cum.
------------+-----------------------------------
1 | 677 51.25 51.25
2 | 644 48.75 100.00
------------+-----------------------------------
Total | 1,321 100.00
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
ta hinsur if subpop2==1
hinsur | Freq. Percent Cum.
------------+-----------------------------------
0 | 243 18.40 18.40
1 | 835 63.21 81.60
2 | 243 18.40 100.00
------------+-----------------------------------
Total | 1,321 100.00
use "C:\Users\Matt\Documents\EPI536\EPI536-Assignments\NHANES0708_newvars.dta"
ta pr_ed3 if subpop2==1
pr_ed3 | Freq. Percent Cum.
---------------+-----------------------------------
>=Some college | 396 29.98 29.98
HS/GED | 360 27.25 57.23
<HS | 565 42.77 100.00
---------------+-----------------------------------
Total | 1,321 100.00