Calculate gender-food security stratified associations between food assistance and BMI z-score. Record the coefficient, its 95% confidence interval (CI) and p-value in the table below. Enter the data to two decimal places. Place a comma between the lower and upper bounds of the 95% CI.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==0 & foodinsec==0): regress bmiz food_any ridageyr i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running regress on estimation sample)
Survey: Linear regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 428
Subpop. size = 7,912,656.38
Design df = 16
F( 13, 4) = 2.20
Prob > F = 0.2323
R-squared = 0.0768
------------------------------------------------------------------------------
| Linearized
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | .2473957 .1313073 1.88 0.078 -.0309633 .5257548
ridageyr | .0404869 .0166452 2.43 0.027 .0052006 .0757731
_Irace_eth_2 | .1456693 .1521162 0.96 0.353 -.1768026 .4681411
_Irace_eth_3 | .0618595 .1788534 0.35 0.734 -.3172928 .4410118
_Irace_eth_4 | .0996813 .1459726 0.68 0.504 -.2097667 .4091294
fpl_2cat | .3092707 .1191234 2.60 0.019 .0567404 .5618011
_Ihinsur_1 | .1680761 .1131271 1.49 0.157 -.0717426 .4078949
_Ihinsur_2 | .0801011 .2093942 0.38 0.707 -.3637947 .523997
pr_male | -.1491205 .1642207 -0.91 0.377 -.4972528 .1990118
_Ipr_ed3_1 | -.2156588 .1107099 -1.95 0.069 -.4503533 .0190357
_Ipr_ed3_2 | .1356853 .2440164 0.56 0.586 -.3816063 .6529769
_Ipr_age_1 | -.0279788 .1793637 -0.16 0.878 -.4082128 .3522553
_Ipr_age_2 | -.1591371 .1709604 -0.93 0.366 -.521557 .2032828
_cons | -.0772961 .2663734 -0.29 0.775 -.6419823 .4873902
------------------------------------------------------------------------------
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): regress bmiz food_any ridageyr i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running regress on estimation sample)
Survey: Linear regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 13, 4) = 4.76
Prob > F = 0.0719
R-squared = 0.0462
------------------------------------------------------------------------------
| Linearized
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | .4284555 .1344224 3.19 0.006 .1434927 .7134183
ridageyr | .0252905 .025005 1.01 0.327 -.0277177 .0782987
_Irace_eth_2 | -.0738456 .1546777 -0.48 0.640 -.4017477 .2540565
_Irace_eth_3 | .172638 .189778 0.91 0.376 -.2296733 .5749493
_Irace_eth_4 | -.2412626 .2050095 -1.18 0.256 -.6758634 .1933382
fpl_2cat | .1319166 .130751 1.01 0.328 -.1452631 .4090963
_Ihinsur_1 | -.042407 .2756891 -0.15 0.880 -.6268417 .5420277
_Ihinsur_2 | .0093716 .3064763 0.03 0.976 -.6403292 .6590724
pr_male | -.0308484 .2532227 -0.12 0.905 -.5676565 .5059597
_Ipr_ed3_1 | .0264535 .218773 0.12 0.905 -.4373246 .4902317
_Ipr_ed3_2 | .0614023 .225778 0.27 0.789 -.4172257 .5400304
_Ipr_age_1 | -.2670542 .3083498 -0.87 0.399 -.9207265 .3866182
_Ipr_age_2 | .0372435 .1815223 0.21 0.840 -.3475666 .4220537
_cons | .0322546 .4301541 0.07 0.941 -.8796314 .9441406
------------------------------------------------------------------------------
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==0 & foodinsec==1): regress bmiz food_any ridageyr i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running regress on estimation sample)
Survey: Linear regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 216
Subpop. size = 3,268,518.44
Design df = 16
F( 13, 4) = 6.59
Prob > F = 0.0411
R-squared = 0.1529
------------------------------------------------------------------------------
| Linearized
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | -.0403234 .3779962 -0.11 0.916 -.8416396 .7609928
ridageyr | .0214725 .0190782 1.13 0.277 -.0189715 .0619164
_Irace_eth_2 | -.6729036 .2715235 -2.48 0.025 -1.248508 -.0972994
_Irace_eth_3 | -.2588894 .2239774 -1.16 0.265 -.7337003 .2159215
_Irace_eth_4 | -.2159575 .2054769 -1.05 0.309 -.651549 .2196341
fpl_2cat | -.0101566 .1391504 -0.07 0.943 -.3051423 .2848291
_Ihinsur_1 | -.2430213 .2165581 -1.12 0.278 -.7021039 .2160613
_Ihinsur_2 | .2229289 .2919968 0.76 0.456 -.3960767 .8419345
pr_male | -.7274353 .1350865 -5.38 0.000 -1.013806 -.4410646
_Ipr_ed3_1 | -.0894788 .2027976 -0.44 0.665 -.5193906 .340433
_Ipr_ed3_2 | -.1100973 .1866579 -0.59 0.564 -.5057944 .2855997
_Ipr_age_1 | -.2489962 .2549444 -0.98 0.343 -.7894542 .2914618
_Ipr_age_2 | -.0209787 .1678879 -0.12 0.902 -.3768852 .3349278
_cons | 1.288713 .4569238 2.82 0.012 .3200774 2.257348
------------------------------------------------------------------------------
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==1): regress bmiz food_any ridageyr i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running regress on estimation sample)
Survey: Linear regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 238
Subpop. size = 3,963,719.92
Design df = 16
F( 13, 4) = 0.82
Prob > F = 0.6493
R-squared = 0.0895
------------------------------------------------------------------------------
| Linearized
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | .2606568 .3514791 0.74 0.469 -.4844456 1.005759
ridageyr | -.0250338 .0270902 -0.92 0.369 -.0824625 .0323948
_Irace_eth_2 | .4480177 .2691064 1.66 0.115 -.1224624 1.018498
_Irace_eth_3 | .0569142 .2841437 0.20 0.844 -.5454435 .6592719
_Irace_eth_4 | .0301188 .2277306 0.13 0.896 -.4526484 .512886
fpl_2cat | -.2559566 .3229465 -0.79 0.440 -.9405726 .4286594
_Ihinsur_1 | -.1761517 .3652936 -0.48 0.636 -.9505395 .5982361
_Ihinsur_2 | .0905289 .407602 0.22 0.827 -.7735487 .9546064
pr_male | -.2832655 .2853847 -0.99 0.336 -.8882541 .3217231
_Ipr_ed3_1 | -.494434 .2740392 -1.80 0.090 -1.075371 .0865032
_Ipr_ed3_2 | -.0494228 .3111463 -0.16 0.876 -.7090236 .6101779
_Ipr_age_1 | .2748134 .2581854 1.06 0.303 -.2725152 .822142
_Ipr_age_2 | .3511531 .3037861 1.16 0.265 -.2928447 .9951508
_cons | .8167034 .552135 1.48 0.159 -.3537705 1.987177
------------------------------------------------------------------------------
Fit a model that tests for interactions between food security and food assistance, among boys.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1): regress bmiz i.foodinsec*food_any ridageyr i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.foodinsec _Ifoodinsec_0-1 (naturally coded; _Ifoodinsec_0 omitted)
i.food~c*food~y _IfooXfood__# (coded as above)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running regress on estimation sample)
Survey: Linear regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 677
Subpop. size = 12,094,827
Design df = 16
F( 15, 2) = 1.42
Prob > F = 0.4891
R-squared = 0.0303
------------------------------------------------------------------------------
| Linearized
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifoodinse~1 | -.0647972 .2801888 -0.23 0.820 -.658771 .5291765
food_any | .3637043 .1636481 2.22 0.041 .0167859 .7106227
_IfooXfood~1 | -.0582465 .2902179 -0.20 0.843 -.6734809 .5569879
ridageyr | .0092831 .0163678 0.57 0.578 -.0254152 .0439813
_Irace_eth_2 | .0830512 .1540993 0.54 0.597 -.2436248 .4097272
_Irace_eth_3 | .1278084 .135264 0.94 0.359 -.1589385 .4145553
_Irace_eth_4 | -.1087663 .1996904 -0.54 0.593 -.532091 .3145584
fpl_2cat | -.0157794 .1501989 -0.11 0.918 -.3341869 .3026281
_Ihinsur_1 | -.0683574 .1984947 -0.34 0.735 -.4891474 .3524326
_Ihinsur_2 | .0557739 .2419498 0.23 0.821 -.4571367 .5686846
pr_male | -.0758672 .1592003 -0.48 0.640 -.4133568 .2616224
_Ipr_ed3_1 | -.1221164 .2016046 -0.61 0.553 -.5494991 .3052662
_Ipr_ed3_2 | .0424473 .1883819 0.23 0.825 -.3569046 .4417991
_Ipr_age_1 | -.1200924 .2331767 -0.52 0.614 -.614405 .3742203
_Ipr_age_2 | .1316877 .1875582 0.70 0.493 -.2659179 .5292933
_cons | .2870245 .3498542 0.82 0.424 -.4546333 1.028682
------------------------------------------------------------------------------
Calculate food-security-specific associations between food assistance and BMI z-score among boys.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1): regress bmiz i.foodinsec*food_any ridageyr i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_ag
# Among food secure (long form)
lincom (1*food_any + 0*_Ifoodinsec_1 + 0*_IfooXfood__1) - (0*food_any + 0*_Ifoodinsec_1 + 0*_IfooXfood__1)
# Among food secure (reduced form)
lincom food_any
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.foodinsec _Ifoodinsec_0-1 (naturally coded; _Ifoodinsec_0 omitted)
i.food~c*food~y _IfooXfood__# (coded as above)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running regress on estimation sample)
Survey: Linear regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 677
Subpop. size = 12,094,827
Design df = 16
F( 15, 2) = 1.42
Prob > F = 0.4891
R-squared = 0.0303
------------------------------------------------------------------------------
| Linearized
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifoodinse~1 | -.0647972 .2801888 -0.23 0.820 -.658771 .5291765
food_any | .3637043 .1636481 2.22 0.041 .0167859 .7106227
_IfooXfood~1 | -.0582465 .2902179 -0.20 0.843 -.6734809 .5569879
ridageyr | .0092831 .0163678 0.57 0.578 -.0254152 .0439813
_Irace_eth_2 | .0830512 .1540993 0.54 0.597 -.2436248 .4097272
_Irace_eth_3 | .1278084 .135264 0.94 0.359 -.1589385 .4145553
_Irace_eth_4 | -.1087663 .1996904 -0.54 0.593 -.532091 .3145584
fpl_2cat | -.0157794 .1501989 -0.11 0.918 -.3341869 .3026281
_Ihinsur_1 | -.0683574 .1984947 -0.34 0.735 -.4891474 .3524326
_Ihinsur_2 | .0557739 .2419498 0.23 0.821 -.4571367 .5686846
pr_male | -.0758672 .1592003 -0.48 0.640 -.4133568 .2616224
_Ipr_ed3_1 | -.1221164 .2016046 -0.61 0.553 -.5494991 .3052662
_Ipr_ed3_2 | .0424473 .1883819 0.23 0.825 -.3569046 .4417991
_Ipr_age_1 | -.1200924 .2331767 -0.52 0.614 -.614405 .3742203
_Ipr_age_2 | .1316877 .1875582 0.70 0.493 -.2659179 .5292933
_cons | .2870245 .3498542 0.82 0.424 -.4546333 1.028682
------------------------------------------------------------------------------
Unknown #command
( 1) food_any = 0
------------------------------------------------------------------------------
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .3637043 .1636481 2.22 0.041 .0167859 .7106227
------------------------------------------------------------------------------
Unknown #command
( 1) food_any = 0
------------------------------------------------------------------------------
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .3637043 .1636481 2.22 0.041 .0167859 .7106227
------------------------------------------------------------------------------
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1): regress bmiz i.foodinsec*food_any ridageyr i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_ag
# Among food insecure (long form)
lincom (1*food_any + 1*_Ifoodinsec_1 + 1*_IfooXfood__1) - (0*food_any + 1*_Ifoodinsec_1 + 0*_IfooXfood__1)
# Among food insecure (reduced form)
lincom food_any + _IfooXfood__1
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.foodinsec _Ifoodinsec_0-1 (naturally coded; _Ifoodinsec_0 omitted)
i.food~c*food~y _IfooXfood__# (coded as above)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running regress on estimation sample)
Survey: Linear regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 677
Subpop. size = 12,094,827
Design df = 16
F( 15, 2) = 1.42
Prob > F = 0.4891
R-squared = 0.0303
------------------------------------------------------------------------------
| Linearized
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifoodinse~1 | -.0647972 .2801888 -0.23 0.820 -.658771 .5291765
food_any | .3637043 .1636481 2.22 0.041 .0167859 .7106227
_IfooXfood~1 | -.0582465 .2902179 -0.20 0.843 -.6734809 .5569879
ridageyr | .0092831 .0163678 0.57 0.578 -.0254152 .0439813
_Irace_eth_2 | .0830512 .1540993 0.54 0.597 -.2436248 .4097272
_Irace_eth_3 | .1278084 .135264 0.94 0.359 -.1589385 .4145553
_Irace_eth_4 | -.1087663 .1996904 -0.54 0.593 -.532091 .3145584
fpl_2cat | -.0157794 .1501989 -0.11 0.918 -.3341869 .3026281
_Ihinsur_1 | -.0683574 .1984947 -0.34 0.735 -.4891474 .3524326
_Ihinsur_2 | .0557739 .2419498 0.23 0.821 -.4571367 .5686846
pr_male | -.0758672 .1592003 -0.48 0.640 -.4133568 .2616224
_Ipr_ed3_1 | -.1221164 .2016046 -0.61 0.553 -.5494991 .3052662
_Ipr_ed3_2 | .0424473 .1883819 0.23 0.825 -.3569046 .4417991
_Ipr_age_1 | -.1200924 .2331767 -0.52 0.614 -.614405 .3742203
_Ipr_age_2 | .1316877 .1875582 0.70 0.493 -.2659179 .5292933
_cons | .2870245 .3498542 0.82 0.424 -.4546333 1.028682
------------------------------------------------------------------------------
Unknown #command
( 1) food_any + _IfooXfood__1 = 0
------------------------------------------------------------------------------
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .3054578 .2565969 1.19 0.251 -.2385034 .849419
------------------------------------------------------------------------------
Unknown #command
( 1) food_any + _IfooXfood__1 = 0
------------------------------------------------------------------------------
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .3054578 .2565969 1.19 0.251 -.2385034 .849419
------------------------------------------------------------------------------
Fit a single model that includes food secure and insecure boys and girls (the full sample). Include the full set of interaction terms. Calculate the gender and food security specific associations from the full set of interaction terms.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1): regress bmiz i.foodinsec*food_any i.foodinsec*i.male i.male*food_any ridageyr i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_ag
# Among food secure (long form)
lincom (1*food_any + 0*_Ifoodinsec_1 + 0*_Imale_1 + 0*_IfooXfood__1 + 0*_ImalXfood__1 + 0*_IfooXmal_1_1) - (0*food_any + 0*_Ifoodinsec_1 + 0*_Imale_1 + 0*_IfooXfood__1 + 0*_ImalXfood__1 + 0*_IfooXmal_1_1)
# Among food secure (reduced form)
lincom food_any
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.foodinsec _Ifoodinsec_0-1 (naturally coded; _Ifoodinsec_0 omitted)
i.food~c*food~y _IfooXfood__# (coded as above)
i.male _Imale_0-1 (naturally coded; _Imale_0 omitted)
i.foo~c*i.male _IfooXmal_#_# (coded as above)
i.male*food_any _ImalXfood__# (coded as above)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running regress on estimation sample)
Survey: Linear regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 1,321
Subpop. size = 23,276,001.8
Design df = 16
F( 16, 1) = .
Prob > F = .
R-squared = 0.0343
------------------------------------------------------------------------------
| Linearized
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifoodinse~1 | .1712736 .2597814 0.66 0.519 -.3794384 .7219856
food_any | .3046731 .1515699 2.01 0.062 -.0166408 .625987
_IfooXfood~1 | -.1933065 .2549453 -0.76 0.459 -.7337663 .3471534
_Ifoodinse~1 | 0 (omitted)
_Imale_1 | -.1444868 .1525541 -0.95 0.358 -.467887 .1789135
_IfooXmal_~1 | -.1417653 .131916 -1.07 0.298 -.4214147 .1378841
_Imale_1 | 0 (omitted)
_ImalXfood~1 | .1105109 .1618646 0.68 0.505 -.2326268 .4536486
ridageyr | .0206143 .0118537 1.74 0.101 -.0045145 .0457431
_Irace_eth_2 | .0149256 .1276252 0.12 0.908 -.2556277 .2854789
_Irace_eth_3 | .0516298 .1366731 0.38 0.711 -.2381042 .3413638
_Irace_eth_4 | -.0771035 .1469755 -0.52 0.607 -.3886778 .2344707
fpl_2cat | .1168072 .1005097 1.16 0.262 -.0962638 .3298782
_Ihinsur_1 | -.0072642 .1294472 -0.06 0.956 -.2816801 .2671517
_Ihinsur_2 | .093606 .1870105 0.50 0.624 -.3028385 .4900505
pr_male | -.180358 .1158267 -1.56 0.139 -.4258996 .0651835
_Ipr_ed3_1 | -.107583 .1072188 -1.00 0.331 -.3348766 .1197106
_Ipr_ed3_2 | .0828911 .1693483 0.49 0.631 -.2761112 .4418934
_Ipr_age_1 | -.1165922 .1654374 -0.70 0.491 -.4673038 .2341195
_Ipr_age_2 | .0098902 .1449523 0.07 0.946 -.2973949 .3171752
_cons | .273532 .2567718 1.07 0.303 -.2707999 .817864
------------------------------------------------------------------------------
Unknown #command
( 1) food_any = 0
------------------------------------------------------------------------------
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .3046731 .1515699 2.01 0.062 -.0166408 .625987
------------------------------------------------------------------------------
Unknown #command
( 1) food_any = 0
------------------------------------------------------------------------------
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .3046731 .1515699 2.01 0.062 -.0166408 .625987
------------------------------------------------------------------------------
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1): regress bmiz i.foodinsec*food_any i.foodinsec*i.male i.male*food_any ridageyr i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_ag
# Among food secure (long form)
lincom (1*food_any + 1*_Ifoodinsec_1 + 0*_Imale_1 + 1*_IfooXfood__1 + 0*_ImalXfood__1 + 0*_IfooXmal_1_1) - (0*food_any + 1*_Ifoodinsec_1 + 0*_Imale_1 + 0*_IfooXfood__1 + 0*_ImalXfood__1 + 0*_IfooXmal_1_1)
# Among food secure (reduced form)
lincom food_any + _IfooXfood__1
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.foodinsec _Ifoodinsec_0-1 (naturally coded; _Ifoodinsec_0 omitted)
i.food~c*food~y _IfooXfood__# (coded as above)
i.male _Imale_0-1 (naturally coded; _Imale_0 omitted)
i.foo~c*i.male _IfooXmal_#_# (coded as above)
i.male*food_any _ImalXfood__# (coded as above)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running regress on estimation sample)
Survey: Linear regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 1,321
Subpop. size = 23,276,001.8
Design df = 16
F( 16, 1) = .
Prob > F = .
R-squared = 0.0343
------------------------------------------------------------------------------
| Linearized
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifoodinse~1 | .1712736 .2597814 0.66 0.519 -.3794384 .7219856
food_any | .3046731 .1515699 2.01 0.062 -.0166408 .625987
_IfooXfood~1 | -.1933065 .2549453 -0.76 0.459 -.7337663 .3471534
_Ifoodinse~1 | 0 (omitted)
_Imale_1 | -.1444868 .1525541 -0.95 0.358 -.467887 .1789135
_IfooXmal_~1 | -.1417653 .131916 -1.07 0.298 -.4214147 .1378841
_Imale_1 | 0 (omitted)
_ImalXfood~1 | .1105109 .1618646 0.68 0.505 -.2326268 .4536486
ridageyr | .0206143 .0118537 1.74 0.101 -.0045145 .0457431
_Irace_eth_2 | .0149256 .1276252 0.12 0.908 -.2556277 .2854789
_Irace_eth_3 | .0516298 .1366731 0.38 0.711 -.2381042 .3413638
_Irace_eth_4 | -.0771035 .1469755 -0.52 0.607 -.3886778 .2344707
fpl_2cat | .1168072 .1005097 1.16 0.262 -.0962638 .3298782
_Ihinsur_1 | -.0072642 .1294472 -0.06 0.956 -.2816801 .2671517
_Ihinsur_2 | .093606 .1870105 0.50 0.624 -.3028385 .4900505
pr_male | -.180358 .1158267 -1.56 0.139 -.4258996 .0651835
_Ipr_ed3_1 | -.107583 .1072188 -1.00 0.331 -.3348766 .1197106
_Ipr_ed3_2 | .0828911 .1693483 0.49 0.631 -.2761112 .4418934
_Ipr_age_1 | -.1165922 .1654374 -0.70 0.491 -.4673038 .2341195
_Ipr_age_2 | .0098902 .1449523 0.07 0.946 -.2973949 .3171752
_cons | .273532 .2567718 1.07 0.303 -.2707999 .817864
------------------------------------------------------------------------------
Unknown #command
( 1) food_any + _IfooXfood__1 = 0
------------------------------------------------------------------------------
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .1113666 .2458974 0.45 0.657 -.4099125 .6326457
------------------------------------------------------------------------------
Unknown #command
( 1) food_any + _IfooXfood__1 = 0
------------------------------------------------------------------------------
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .1113666 .2458974 0.45 0.657 -.4099125 .6326457
------------------------------------------------------------------------------
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1): regress bmiz i.foodinsec*food_any i.foodinsec*i.male i.male*food_any ridageyr i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_ag
# Among food secure (long form)
lincom (1*food_any + 0*_Ifoodinsec_1 + 1*_Imale_1 + 0*_IfooXfood__1 + 1*_ImalXfood__1 + 0*_IfooXmal_1_1) - (0*food_any + 0*_Ifoodinsec_1 + 1*_Imale_1 + 0*_IfooXfood__1 + 0*_ImalXfood__1 + 0*_IfooXmal_1_1)
# Among food secure (reduced form)
lincom food_any + _ImalXfood__1
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.foodinsec _Ifoodinsec_0-1 (naturally coded; _Ifoodinsec_0 omitted)
i.food~c*food~y _IfooXfood__# (coded as above)
i.male _Imale_0-1 (naturally coded; _Imale_0 omitted)
i.foo~c*i.male _IfooXmal_#_# (coded as above)
i.male*food_any _ImalXfood__# (coded as above)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running regress on estimation sample)
Survey: Linear regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 1,321
Subpop. size = 23,276,001.8
Design df = 16
F( 16, 1) = .
Prob > F = .
R-squared = 0.0343
------------------------------------------------------------------------------
| Linearized
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifoodinse~1 | .1712736 .2597814 0.66 0.519 -.3794384 .7219856
food_any | .3046731 .1515699 2.01 0.062 -.0166408 .625987
_IfooXfood~1 | -.1933065 .2549453 -0.76 0.459 -.7337663 .3471534
_Ifoodinse~1 | 0 (omitted)
_Imale_1 | -.1444868 .1525541 -0.95 0.358 -.467887 .1789135
_IfooXmal_~1 | -.1417653 .131916 -1.07 0.298 -.4214147 .1378841
_Imale_1 | 0 (omitted)
_ImalXfood~1 | .1105109 .1618646 0.68 0.505 -.2326268 .4536486
ridageyr | .0206143 .0118537 1.74 0.101 -.0045145 .0457431
_Irace_eth_2 | .0149256 .1276252 0.12 0.908 -.2556277 .2854789
_Irace_eth_3 | .0516298 .1366731 0.38 0.711 -.2381042 .3413638
_Irace_eth_4 | -.0771035 .1469755 -0.52 0.607 -.3886778 .2344707
fpl_2cat | .1168072 .1005097 1.16 0.262 -.0962638 .3298782
_Ihinsur_1 | -.0072642 .1294472 -0.06 0.956 -.2816801 .2671517
_Ihinsur_2 | .093606 .1870105 0.50 0.624 -.3028385 .4900505
pr_male | -.180358 .1158267 -1.56 0.139 -.4258996 .0651835
_Ipr_ed3_1 | -.107583 .1072188 -1.00 0.331 -.3348766 .1197106
_Ipr_ed3_2 | .0828911 .1693483 0.49 0.631 -.2761112 .4418934
_Ipr_age_1 | -.1165922 .1654374 -0.70 0.491 -.4673038 .2341195
_Ipr_age_2 | .0098902 .1449523 0.07 0.946 -.2973949 .3171752
_cons | .273532 .2567718 1.07 0.303 -.2707999 .817864
------------------------------------------------------------------------------
Unknown #command
( 1) food_any + _ImalXfood__1 = 0
------------------------------------------------------------------------------
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .415184 .1592048 2.61 0.019 .0776848 .7526832
------------------------------------------------------------------------------
Unknown #command
( 1) food_any + _ImalXfood__1 = 0
------------------------------------------------------------------------------
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .415184 .1592048 2.61 0.019 .0776848 .7526832
------------------------------------------------------------------------------
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1): regress bmiz i.foodinsec*food_any i.foodinsec*i.male i.male*food_any ridageyr i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_ag
# Among food secure (long form)
lincom (1*food_any + 1*_Ifoodinsec_1 + 1*_Imale_1 + 1*_IfooXfood__1 + 1*_ImalXfood__1 + 1*_IfooXmal_1_1) - (0*food_any + 1*_Ifoodinsec_1 + 1*_Imale_1 + 0*_IfooXfood__1 + 0*_ImalXfood__1 + 1*_IfooXmal_1_1)
# Among food secure (reduced form)
lincom food_any + _IfooXfood__1 + _ImalXfood__1
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.foodinsec _Ifoodinsec_0-1 (naturally coded; _Ifoodinsec_0 omitted)
i.food~c*food~y _IfooXfood__# (coded as above)
i.male _Imale_0-1 (naturally coded; _Imale_0 omitted)
i.foo~c*i.male _IfooXmal_#_# (coded as above)
i.male*food_any _ImalXfood__# (coded as above)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running regress on estimation sample)
Survey: Linear regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 1,321
Subpop. size = 23,276,001.8
Design df = 16
F( 16, 1) = .
Prob > F = .
R-squared = 0.0343
------------------------------------------------------------------------------
| Linearized
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifoodinse~1 | .1712736 .2597814 0.66 0.519 -.3794384 .7219856
food_any | .3046731 .1515699 2.01 0.062 -.0166408 .625987
_IfooXfood~1 | -.1933065 .2549453 -0.76 0.459 -.7337663 .3471534
_Ifoodinse~1 | 0 (omitted)
_Imale_1 | -.1444868 .1525541 -0.95 0.358 -.467887 .1789135
_IfooXmal_~1 | -.1417653 .131916 -1.07 0.298 -.4214147 .1378841
_Imale_1 | 0 (omitted)
_ImalXfood~1 | .1105109 .1618646 0.68 0.505 -.2326268 .4536486
ridageyr | .0206143 .0118537 1.74 0.101 -.0045145 .0457431
_Irace_eth_2 | .0149256 .1276252 0.12 0.908 -.2556277 .2854789
_Irace_eth_3 | .0516298 .1366731 0.38 0.711 -.2381042 .3413638
_Irace_eth_4 | -.0771035 .1469755 -0.52 0.607 -.3886778 .2344707
fpl_2cat | .1168072 .1005097 1.16 0.262 -.0962638 .3298782
_Ihinsur_1 | -.0072642 .1294472 -0.06 0.956 -.2816801 .2671517
_Ihinsur_2 | .093606 .1870105 0.50 0.624 -.3028385 .4900505
pr_male | -.180358 .1158267 -1.56 0.139 -.4258996 .0651835
_Ipr_ed3_1 | -.107583 .1072188 -1.00 0.331 -.3348766 .1197106
_Ipr_ed3_2 | .0828911 .1693483 0.49 0.631 -.2761112 .4418934
_Ipr_age_1 | -.1165922 .1654374 -0.70 0.491 -.4673038 .2341195
_Ipr_age_2 | .0098902 .1449523 0.07 0.946 -.2973949 .3171752
_cons | .273532 .2567718 1.07 0.303 -.2707999 .817864
------------------------------------------------------------------------------
Unknown #command
( 1) food_any + _IfooXfood__1 + _ImalXfood__1 = 0
------------------------------------------------------------------------------
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .2218775 .2231678 0.99 0.335 -.251217 .694972
------------------------------------------------------------------------------
Unknown #command
( 1) food_any + _IfooXfood__1 + _ImalXfood__1 = 0
------------------------------------------------------------------------------
bmiz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
(1) | .2218775 .2231678 0.99 0.335 -.251217 .694972
------------------------------------------------------------------------------