Use the selection approach to identify confounders of the association between food assistance and high waist circumference among food secure boys.
Fit the crude model, modeling high waist circumference as a function of food assistance only. You have used the code needed Exercise 8. In the table below A.3, record the odds ratios (OR) for food assistance and its 95% confidence interval. Separate the confidence interval bounds with a comma. Report these measures to 2 decimal places.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 1, 16) = 2.85
Prob > F = 0.1107
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | .6142502 .3638321 1.69 0.111 -.1570394 1.38554
_cons | -1.961632 .3808709 -5.15 0.000 -2.769042 -1.154222
------------------------------------------------------------------------------
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 1, 16) = 2.85
Prob > F = 0.1107
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | 1.84827 .67246 1.69 0.111 .8546704 3.996983
_cons | .1406287 .0535614 -5.15 0.000 .0627221 .3153029
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
Fit the remaining models, modeling high waist circumference as a function of food assistance plus one potential confounder at a time as shown in the table below A.3. Record OR for food assistance and its 95% CI from each model in rows b, c, and d.Â
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any ridageyr
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any ridageyr,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 2, 15) = 3.85
Prob > F = 0.0446
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | .6088534 .3778507 1.61 0.127 -.1921544 1.409861
ridageyr | .0822036 .0354281 2.32 0.034 .0070993 .1573079
_cons | -2.779495 .5112307 -5.44 0.000 -3.863255 -1.695734
------------------------------------------------------------------------------
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 2, 15) = 3.85
Prob > F = 0.0446
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | 1.838322 .6946115 1.61 0.127 .8251795 4.095387
ridageyr | 1.085677 .0384635 2.32 0.034 1.007125 1.170356
_cons | .0620699 .031732 -5.44 0.000 .0209995 .1834645
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any i.race_eth
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any i.race_eth,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 4, 13) = 3.51
Prob > F = 0.0376
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | .7618749 .4012715 1.90 0.076 -.0887827 1.612532
_Irace_eth_2 | -1.435009 .4503046 -3.19 0.006 -2.389612 -.4804058
_Irace_eth_3 | .3474135 .2938203 1.18 0.254 -.2754577 .9702846
_Irace_eth_4 | -.176996 .4750378 -0.37 0.714 -1.184031 .8300392
_cons | -1.969817 .3932507 -5.01 0.000 -2.803471 -1.136163
------------------------------------------------------------------------------
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 4, 13) = 3.51
Prob > F = 0.0376
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | 2.142289 .8596395 1.90 0.076 .9150443 5.015497
_Irace_eth_2 | .2381133 .1072235 -3.19 0.006 .0916653 .6185323
_Irace_eth_3 | 1.415402 .4158737 1.18 0.254 .7592246 2.638695
_Irace_eth_4 | .8377832 .3979787 -0.37 0.714 .3060425 2.293409
_cons | .1394824 .0548515 -5.01 0.000 .0605994 .3210486
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any i.hinsur
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any i.hinsur,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 3, 14) = 3.95
Prob > F = 0.0311
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | .6921274 .3211222 2.16 0.047 .0113788 1.372876
_Ihinsur_1 | .0489524 .3928439 0.12 0.902 -.7838395 .8817443
_Ihinsur_2 | .4452616 .4399257 1.01 0.327 -.4873393 1.377862
_cons | -2.139394 .3641604 -5.87 0.000 -2.911379 -1.367408
------------------------------------------------------------------------------
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 3, 14) = 3.95
Prob > F = 0.0311
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | 1.997962 .6415898 2.16 0.047 1.011444 3.946685
_Ihinsur_1 | 1.05017 .4125531 0.12 0.902 .4566493 2.415109
_Ihinsur_2 | 1.560898 .6866794 1.01 0.327 .6142586 3.966414
_cons | .1177262 .0428712 -5.87 0.000 .0544006 .2547664
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
Calculate the percent change in each OR from b, c, and d, compared to the OR in a. Enter these into the last column. Report the % change in OR to 1 decimal, retaining the sign.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any i.race_eth i.hinsur
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any i.race_eth i.hinsur,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 6, 11) = 3.12
Prob > F = 0.0486
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | .8182415 .3409476 2.40 0.029 .0954649 1.541018
_Irace_eth_2 | -1.443373 .4492673 -3.21 0.005 -2.395777 -.4909691
_Irace_eth_3 | .2763595 .3420736 0.81 0.431 -.4488041 1.001523
_Irace_eth_4 | -.20981 .494299 -0.42 0.677 -1.257677 .8380571
_Ihinsur_1 | .0478646 .3890178 0.12 0.904 -.7768163 .8725455
_Ihinsur_2 | .3158707 .4990994 0.63 0.536 -.7421728 1.373914
_cons | -2.082562 .3547478 -5.87 0.000 -2.834594 -1.33053
------------------------------------------------------------------------------
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 6, 11) = 3.12
Prob > F = 0.0486
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | 2.266511 .7727613 2.40 0.029 1.10017 4.669341
_Irace_eth_2 | .2361299 .1060854 -3.21 0.005 .0911018 .612033
_Irace_eth_3 | 1.318322 .450963 0.81 0.431 .6383912 2.722425
_Irace_eth_4 | .8107383 .4007471 -0.42 0.677 .2843137 2.311871
_Ihinsur_1 | 1.049029 .4080908 0.12 0.904 .4598678 2.392995
_Ihinsur_2 | 1.371453 .6844913 0.63 0.536 .4760784 3.950784
_cons | .1246105 .0442053 -5.87 0.000 .0587424 .264337
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any i.race_eth ridageyr
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any i.race_eth ridageyr,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 5, 12) = 3.54
Prob > F = 0.0339
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | .7693159 .4095805 1.88 0.079 -.0989561 1.637588
_Irace_eth_2 | -1.495494 .4366177 -3.43 0.003 -2.421083 -.5699063
_Irace_eth_3 | .4151728 .2906412 1.43 0.172 -.2009591 1.031305
_Irace_eth_4 | -.1667675 .4846378 -0.34 0.735 -1.194154 .8606188
ridageyr | .0949279 .0359291 2.64 0.018 .0187617 .1710941
_cons | -2.935496 .5278219 -5.56 0.000 -4.054429 -1.816564
------------------------------------------------------------------------------
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 5, 12) = 3.54
Prob > F = 0.0339
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | 2.158289 .8839932 1.88 0.079 .9057825 5.142749
_Irace_eth_2 | .2241378 .0978625 -3.43 0.003 .0888254 .5655785
_Irace_eth_3 | 1.514632 .4402146 1.43 0.172 .8179459 2.804723
_Irace_eth_4 | .8463964 .4101957 -0.34 0.735 .3029602 2.364623
ridageyr | 1.09958 .0395069 2.64 0.018 1.018939 1.186602
_cons | .0531044 .0280296 -5.56 0.000 .0173454 .1625835
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any i.race_eth i.hinsur ridageyr
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any i.race_eth i.hinsur ridageyr,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 7, 10) = 3.16
Prob > F = 0.0489
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | .8040813 .3178806 2.53 0.022 .1302045 1.477958
_Irace_eth_2 | -1.501573 .4340687 -3.46 0.003 -2.421758 -.5813888
_Irace_eth_3 | .3607789 .3374032 1.07 0.301 -.3544839 1.076042
_Irace_eth_4 | -.2016697 .5043246 -0.40 0.695 -1.27079 .8674507
_Ihinsur_1 | .0919163 .4348699 0.21 0.835 -.8299668 1.013799
_Ihinsur_2 | .2847282 .4997399 0.57 0.577 -.774673 1.344129
ridageyr | .0940991 .0363554 2.59 0.020 .0170292 .1711691
_cons | -3.047098 .5822214 -5.23 0.000 -4.281352 -1.812844
------------------------------------------------------------------------------
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 7, 10) = 3.16
Prob > F = 0.0489
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | 2.234643 .7103496 2.53 0.022 1.139061 4.383985
_Irace_eth_2 | .2227794 .0967016 -3.46 0.003 .0887654 .5591213
_Irace_eth_3 | 1.434446 .4839867 1.07 0.301 .7015354 2.933047
_Irace_eth_4 | .8173648 .4122172 -0.40 0.695 .2806098 2.380834
_Ihinsur_1 | 1.096273 .4767362 0.21 0.835 .4360638 2.756052
_Ihinsur_2 | 1.329401 .6643545 0.57 0.577 .4608545 3.834847
ridageyr | 1.098669 .0399425 2.59 0.020 1.017175 1.186691
_cons | .0474966 .0276535 -5.23 0.000 .013824 .1631894
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any ridageyr i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any ridageyr i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 13, 4) = 1.02
Prob > F = 0.5468
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | .9272267 .3568708 2.60 0.019 .1706943 1.683759
ridageyr | .0800555 .0451965 1.77 0.096 -.0157568 .1758679
_Irace_eth_2 | -1.287956 .4445736 -2.90 0.011 -2.23041 -.3455016
_Irace_eth_3 | .4460382 .4497844 0.99 0.336 -.507462 1.399538
_Irace_eth_4 | -.1008166 .5598711 -0.18 0.859 -1.28769 1.086057
fpl_2cat | -.0852844 .2728463 -0.31 0.759 -.6636928 .4931241
_Ihinsur_1 | .1290119 .4867204 0.27 0.794 -.9027893 1.160813
_Ihinsur_2 | .3096302 .5013364 0.62 0.546 -.7531555 1.372416
pr_male | .5499332 .3352031 1.64 0.120 -.1606656 1.260532
_Ipr_ed3_1 | -.2980949 .3093093 -0.96 0.350 -.9538014 .3576115
_Ipr_ed3_2 | -.2716093 .4705372 -0.58 0.572 -1.269104 .725885
_Ipr_age_1 | -.5530981 .4634674 -1.19 0.250 -1.535605 .4294089
_Ipr_age_2 | .0562886 .4006176 0.14 0.890 -.7929828 .90556
_cons | -3.068995 .7691138 -3.99 0.001 -4.699444 -1.438547
------------------------------------------------------------------------------
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 13, 4) = 1.02
Prob > F = 0.5468
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | 2.52749 .9019874 2.60 0.019 1.186128 5.385763
ridageyr | 1.083347 .0489635 1.77 0.096 .9843667 1.192281
_Irace_eth_2 | .2758341 .1226286 -2.90 0.011 .1074844 .7078652
_Irace_eth_3 | 1.562111 .7026132 0.99 0.336 .6020215 4.053329
_Irace_eth_4 | .9040988 .5061788 -0.18 0.859 .2759073 2.96257
fpl_2cat | .9182511 .2505415 -0.31 0.759 .5149462 1.637424
_Ihinsur_1 | 1.137704 .5537436 0.27 0.794 .4054372 3.192528
_Ihinsur_2 | 1.362921 .6832819 0.62 0.546 .4708784 3.94487
pr_male | 1.733137 .5809529 1.64 0.120 .8515768 3.527297
_Ipr_ed3_1 | .7422309 .2295789 -0.96 0.350 .3852737 1.42991
_Ipr_ed3_2 | .762152 .3586209 -0.58 0.572 .2810835 2.066559
_Ipr_age_1 | .5751651 .2665703 -1.19 0.250 .2153254 1.536349
_Ipr_age_2 | 1.057903 .4238146 0.14 0.890 .4524931 2.473317
_cons | .0464678 .035739 -3.99 0.001 .0091003 .2372723
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 12, 5) = 1.44
Prob > F = 0.3609
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | .9404027 .371699 2.53 0.022 .1524361 1.728369
_Irace_eth_2 | -1.232972 .4471721 -2.76 0.014 -2.180934 -.2850093
_Irace_eth_3 | .3814446 .4325137 0.88 0.391 -.5354434 1.298333
_Irace_eth_4 | -.1010147 .5321377 -0.19 0.852 -1.229096 1.027067
fpl_2cat | -.0651372 .2617233 -0.25 0.807 -.6199658 .4896914
_Ihinsur_1 | .0959409 .4491109 0.21 0.834 -.8561317 1.048013
_Ihinsur_2 | .2939744 .4879669 0.60 0.555 -.7404693 1.328418
pr_male | .4968137 .3130573 1.59 0.132 -.1668381 1.160466
_Ipr_ed3_1 | -.2597465 .3014414 -0.86 0.402 -.8987738 .3792808
_Ipr_ed3_2 | -.2087123 .4638325 -0.45 0.659 -1.191993 .7745687
_Ipr_age_1 | -.7622962 .4730538 -1.61 0.127 -1.765126 .2405331
_Ipr_age_2 | .2112815 .3829006 0.55 0.589 -.6004314 1.022994
_cons | -2.301137 .5181973 -4.44 0.000 -3.399666 -1.202607
------------------------------------------------------------------------------
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 12, 5) = 1.44
Prob > F = 0.3609
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | 2.561013 .9519258 2.53 0.022 1.164668 5.631464
_Irace_eth_2 | .2914253 .1303172 -2.76 0.014 .112936 .7520073
_Irace_eth_3 | 1.464399 .6333724 0.88 0.391 .5854097 3.663184
_Irace_eth_4 | .9039198 .4810098 -0.19 0.852 .2925569 2.792862
fpl_2cat | .9369389 .2452187 -0.25 0.807 .5379628 1.631813
_Ihinsur_1 | 1.100694 .4943337 0.21 0.834 .4248022 2.85198
_Ihinsur_2 | 1.341749 .6547294 0.60 0.555 .4768901 3.775066
pr_male | 1.643476 .5145023 1.59 0.132 .8463366 3.191419
_Ipr_ed3_1 | .771247 .2324858 -0.86 0.402 .4070685 1.461233
_Ipr_ed3_2 | .8116287 .3764598 -0.45 0.659 .3036154 2.169656
_Ipr_age_1 | .4665938 .220724 -1.61 0.127 .1711653 1.271927
_Ipr_age_2 | 1.23526 .4729817 0.55 0.589 .5485749 2.781511
_cons | .100145 .0518948 -4.44 0.000 .0333844 .3004099
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any ridageyr fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any ridageyr fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 10, 7) = 1.23
Prob > F = 0.4013
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | .8311314 .386125 2.15 0.047 .0125829 1.64968
ridageyr | .0660236 .0462608 1.43 0.173 -.0320448 .1640921
fpl_2cat | -.0656397 .254088 -0.26 0.799 -.6042822 .4730027
_Ihinsur_1 | .1621861 .4968961 0.33 0.748 -.8911865 1.215559
_Ihinsur_2 | .4706424 .4473029 1.05 0.308 -.4775974 1.418882
pr_male | .7021357 .2941029 2.39 0.030 .0786654 1.325606
_Ipr_ed3_1 | -.2956128 .3176213 -0.93 0.366 -.96894 .3777143
_Ipr_ed3_2 | -.1188434 .3346465 -0.36 0.727 -.8282623 .5905755
_Ipr_age_1 | -.6372084 .4593614 -1.39 0.184 -1.611011 .3365943
_Ipr_age_2 | .0168443 .3834861 0.04 0.966 -.79611 .8297986
_cons | -3.064427 .7889995 -3.88 0.001 -4.737031 -1.391823
------------------------------------------------------------------------------
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 10, 7) = 1.23
Prob > F = 0.4013
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | 2.295915 .8865101 2.15 0.047 1.012662 5.205313
ridageyr | 1.068252 .0494181 1.43 0.173 .9684632 1.178323
fpl_2cat | .9364682 .2379453 -0.26 0.799 .5464665 1.604806
_Ihinsur_1 | 1.176079 .5843891 0.33 0.748 .4101688 3.372178
_Ihinsur_2 | 1.601022 .716142 1.05 0.308 .6202718 4.132499
pr_male | 2.018058 .5935167 2.39 0.030 1.081842 3.764466
_Ipr_ed3_1 | .7440755 .2363342 -0.93 0.366 .3794851 1.458946
_Ipr_ed3_2 | .8879468 .2971483 -0.36 0.727 .4368077 1.805027
_Ipr_age_1 | .5287664 .2428949 -1.39 0.184 .1996856 1.400171
_Ipr_age_2 | 1.016987 .3900004 0.04 0.966 .4510802 2.292857
_cons | .0466806 .036831 -3.88 0.001 .0087646 .2486217
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any ridageyr i.race_eth fpl_2cat pr_male i.pr_ed3 i.pr_age
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any ridageyr i.race_eth fpl_2cat pr_male i.pr_ed3 i.pr_age,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 11, 6) = 1.96
Prob > F = 0.2111
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | .8889142 .4274134 2.08 0.054 -.0171618 1.79499
ridageyr | .0796373 .0443663 1.79 0.092 -.014415 .1736897
_Irace_eth_2 | -1.290931 .450896 -2.86 0.011 -2.246788 -.3350739
_Irace_eth_3 | .4970587 .3797406 1.31 0.209 -.3079555 1.302073
_Irace_eth_4 | -.0571944 .5345954 -0.11 0.916 -1.190486 1.076097
fpl_2cat | -.108427 .2454037 -0.44 0.665 -.6286596 .4118057
pr_male | .5384686 .336609 1.60 0.129 -.1751105 1.252048
_Ipr_ed3_1 | -.2754388 .3083478 -0.89 0.385 -.929107 .3782294
_Ipr_ed3_2 | -.2569742 .4872843 -0.53 0.605 -1.289971 .7760224
_Ipr_age_1 | -.5535972 .482764 -1.15 0.268 -1.577011 .4698168
_Ipr_age_2 | .074246 .4016124 0.18 0.856 -.7771342 .9256263
_cons | -2.916375 .5822043 -5.01 0.000 -4.150593 -1.682157
------------------------------------------------------------------------------
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 11, 6) = 1.96
Prob > F = 0.2111
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | 2.432487 1.039678 2.08 0.054 .9829846 6.019416
ridageyr | 1.082894 .048044 1.79 0.092 .9856884 1.189686
_Irace_eth_2 | .2750147 .124003 -2.86 0.011 .1057384 .7152852
_Irace_eth_3 | 1.643879 .6242477 1.31 0.209 .734948 3.676911
_Irace_eth_4 | .9444104 .5048775 -0.11 0.916 .3040734 2.93321
fpl_2cat | .8972444 .2201871 -0.44 0.665 .5333062 1.509541
pr_male | 1.713381 .5767394 1.60 0.129 .8393643 3.497498
_Ipr_ed3_1 | .7592389 .2341097 -0.89 0.385 .3949062 1.459698
_Ipr_ed3_2 | .7733882 .3768599 -0.53 0.605 .2752788 2.172813
_Ipr_age_1 | .5748782 .2775305 -1.15 0.268 .2065916 1.599701
_Ipr_age_2 | 1.077072 .4325654 0.18 0.856 .4597216 2.523448
_cons | .0541296 .0315145 -5.01 0.000 .0157551 .1859724
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any i.race_eth fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 12, 5) = 1.44
Prob > F = 0.3609
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | .9404027 .371699 2.53 0.022 .1524361 1.728369
_Irace_eth_2 | -1.232972 .4471721 -2.76 0.014 -2.180934 -.2850093
_Irace_eth_3 | .3814446 .4325137 0.88 0.391 -.5354434 1.298333
_Irace_eth_4 | -.1010147 .5321377 -0.19 0.852 -1.229096 1.027067
fpl_2cat | -.0651372 .2617233 -0.25 0.807 -.6199658 .4896914
_Ihinsur_1 | .0959409 .4491109 0.21 0.834 -.8561317 1.048013
_Ihinsur_2 | .2939744 .4879669 0.60 0.555 -.7404693 1.328418
pr_male | .4968137 .3130573 1.59 0.132 -.1668381 1.160466
_Ipr_ed3_1 | -.2597465 .3014414 -0.86 0.402 -.8987738 .3792808
_Ipr_ed3_2 | -.2087123 .4638325 -0.45 0.659 -1.191993 .7745687
_Ipr_age_1 | -.7622962 .4730538 -1.61 0.127 -1.765126 .2405331
_Ipr_age_2 | .2112815 .3829006 0.55 0.589 -.6004314 1.022994
_cons | -2.301137 .5181973 -4.44 0.000 -3.399666 -1.202607
------------------------------------------------------------------------------
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 12, 5) = 1.44
Prob > F = 0.3609
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | 2.561013 .9519258 2.53 0.022 1.164668 5.631464
_Irace_eth_2 | .2914253 .1303172 -2.76 0.014 .112936 .7520073
_Irace_eth_3 | 1.464399 .6333724 0.88 0.391 .5854097 3.663184
_Irace_eth_4 | .9039198 .4810098 -0.19 0.852 .2925569 2.792862
fpl_2cat | .9369389 .2452187 -0.25 0.807 .5379628 1.631813
_Ihinsur_1 | 1.100694 .4943337 0.21 0.834 .4248022 2.85198
_Ihinsur_2 | 1.341749 .6547294 0.60 0.555 .4768901 3.775066
pr_male | 1.643476 .5145023 1.59 0.132 .8463366 3.191419
_Ipr_ed3_1 | .771247 .2324858 -0.86 0.402 .4070685 1.461233
_Ipr_ed3_2 | .8116287 .3764598 -0.45 0.659 .3036154 2.169656
_Ipr_age_1 | .4665938 .220724 -1.61 0.127 .1711653 1.271927
_Ipr_age_2 | 1.23526 .4729817 0.55 0.589 .5485749 2.781511
_cons | .100145 .0518948 -4.44 0.000 .0333844 .3004099
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any i.race_eth fpl_2cat pr_male i.pr_ed3 i.pr_age
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any i.race_eth fpl_2cat pr_male i.pr_ed3 i.pr_age,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 10, 7) = 2.27
Prob > F = 0.1443
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | .901453 .4250019 2.12 0.050 .0004893 1.802417
_Irace_eth_2 | -1.237741 .4527154 -2.73 0.015 -2.197455 -.2780271
_Irace_eth_3 | .4345537 .359466 1.21 0.244 -.3274802 1.196588
_Irace_eth_4 | -.0629902 .5112467 -0.12 0.903 -1.146785 1.020804
fpl_2cat | -.0799125 .2355466 -0.34 0.739 -.579249 .4194241
pr_male | .4833264 .3158258 1.53 0.145 -.1861944 1.152847
_Ipr_ed3_1 | -.2459283 .3009981 -0.82 0.426 -.8840157 .3921591
_Ipr_ed3_2 | -.194524 .4780339 -0.41 0.689 -1.207911 .8188625
_Ipr_age_1 | -.7644227 .4910053 -1.56 0.139 -1.805307 .2764621
_Ipr_age_2 | .2308921 .3819742 0.60 0.554 -.578857 1.040641
_cons | -2.176192 .4072622 -5.34 0.000 -3.039549 -1.312834
------------------------------------------------------------------------------
i.race_eth _Irace_eth_1-4 (naturally coded; _Irace_eth_1 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 10, 7) = 2.27
Prob > F = 0.1443
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | 2.46318 1.046856 2.12 0.050 1.000489 6.064286
_Irace_eth_2 | .2900387 .131305 -2.73 0.015 .1110855 .7572763
_Irace_eth_3 | 1.544274 .555114 1.21 0.244 .7207375 3.308807
_Irace_eth_4 | .9389527 .4800365 -0.12 0.903 .3176564 2.775426
fpl_2cat | .9231972 .217456 -0.34 0.739 .560319 1.521085
pr_male | 1.621459 .5120986 1.53 0.145 .8301122 3.167198
_Ipr_ed3_1 | .7819783 .235374 -0.82 0.426 .4131206 1.480173
_Ipr_ed3_2 | .8232264 .3935301 -0.41 0.689 .298821 2.267919
_Ipr_age_1 | .4656027 .2286134 -1.56 0.139 .1644239 1.318457
_Ipr_age_2 | 1.259723 .4811818 0.60 0.554 .5605387 2.831032
_cons | .1134728 .0462132 -5.34 0.000 .0478565 .2690564
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any fpl_2cat i.hinsur pr_male i.pr_ed3 i.pr_age,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 9, 8) = 1.52
Prob > F = 0.2827
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | .8459989 .3884823 2.18 0.045 .0224532 1.669545
fpl_2cat | -.0598319 .2469559 -0.24 0.812 -.583355 .4636912
_Ihinsur_1 | .1352766 .4648365 0.29 0.775 -.8501328 1.120686
_Ihinsur_2 | .456281 .4323705 1.06 0.307 -.4603035 1.372865
pr_male | .6554389 .2775843 2.36 0.031 .0669865 1.243891
_Ipr_ed3_1 | -.2747141 .3126898 -0.88 0.393 -.937587 .3881587
_Ipr_ed3_2 | -.0872267 .3417049 -0.26 0.802 -.8116087 .6371554
_Ipr_age_1 | -.809579 .4599328 -1.76 0.097 -1.784593 .1654351
_Ipr_age_2 | .1478644 .3578574 0.41 0.685 -.6107594 .9064881
_cons | -2.427009 .5473102 -4.43 0.000 -3.587254 -1.266763
------------------------------------------------------------------------------
i.hinsur _Ihinsur_0-2 (naturally coded; _Ihinsur_0 omitted)
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 9, 8) = 1.52
Prob > F = 0.2827
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | 2.330304 .9052821 2.18 0.045 1.022707 5.309749
fpl_2cat | .9419229 .2326134 -0.24 0.812 .5580231 1.589932
_Ihinsur_1 | 1.144853 .5321697 0.29 0.775 .4273582 3.066958
_Ihinsur_2 | 1.578194 .6823644 1.06 0.307 .6310921 3.946643
pr_male | 1.925988 .5346239 2.36 0.031 1.069281 3.469086
_Ipr_ed3_1 | .7597893 .2375784 -0.88 0.393 .3915716 1.474264
_Ipr_ed3_2 | .9164693 .3131621 -0.26 0.802 .444143 1.891094
_Ipr_age_1 | .4450454 .204691 -1.76 0.097 .1678654 1.179906
_Ipr_age_2 | 1.159356 .4148839 0.41 0.685 .5429384 2.475613
_cons | .0883006 .0483278 -4.43 0.000 .0276742 .2817422
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any fpl_2cat pr_male i.pr_ed3 i.pr_age
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata food_any fpl_2cat pr_male i.pr_ed3 i.pr_age,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 7, 10) = 2.13
Prob > F = 0.1344
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | .7781024 .4126238 1.89 0.078 -.0966211 1.652826
fpl_2cat | -.0757396 .2300707 -0.33 0.746 -.5634676 .4119885
pr_male | .6339825 .276364 2.29 0.036 .0481169 1.219848
_Ipr_ed3_1 | -.2470754 .312855 -0.79 0.441 -.9102983 .4161476
_Ipr_ed3_2 | -.0340556 .358733 -0.09 0.926 -.7945356 .7264244
_Ipr_age_1 | -.8174745 .4758838 -1.72 0.105 -1.826303 .1913541
_Ipr_age_2 | .1657898 .3591012 0.46 0.651 -.5954707 .9270503
_cons | -2.218637 .3901059 -5.69 0.000 -3.045625 -1.39165
------------------------------------------------------------------------------
i.pr_ed3 _Ipr_ed3_0-2 (naturally coded; _Ipr_ed3_0 omitted)
i.pr_age _Ipr_age_0-2 (naturally coded; _Ipr_age_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 7, 10) = 2.13
Prob > F = 0.1344
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
food_any | 2.177337 .898421 1.89 0.078 .9078999 5.221715
fpl_2cat | .9270576 .2132888 -0.33 0.746 .5692318 1.509817
pr_male | 1.885103 .5209747 2.29 0.036 1.049293 3.386673
_Ipr_ed3_1 | .7810818 .2443653 -0.79 0.441 .4024042 1.51611
_Ipr_ed3_2 | .9665178 .3467218 -0.09 0.926 .451791 2.067674
_Ipr_age_1 | .4415454 .2101243 -1.72 0.105 .1610077 1.210888
_Ipr_age_2 | 1.180325 .4238561 0.46 0.651 .551303 2.527044
_cons | .1087572 .0424268 -5.69 0.000 .0475666 .2486647
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 1, 16) = 2.85
Prob > F = 0.1107
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | .6142502 .3638321 1.69 0.111 -.1570394 1.38554
_cons | -1.961632 .3808709 -5.15 0.000 -2.769042 -1.154222
------------------------------------------------------------------------------
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 1, 16) = 2.85
Prob > F = 0.1107
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | 1.84827 .67246 1.69 0.111 .8546704 3.996983
_cons | .1406287 .0535614 -5.15 0.000 .0627221 .3153029
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any ridageyr
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any ridageyr,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 2, 15) = 3.85
Prob > F = 0.0446
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | .6088534 .3778507 1.61 0.127 -.1921544 1.409861
ridageyr | .0822036 .0354281 2.32 0.034 .0070993 .1573079
_cons | -2.779495 .5112307 -5.44 0.000 -3.863255 -1.695734
------------------------------------------------------------------------------
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 2, 15) = 3.85
Prob > F = 0.0446
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | 1.838322 .6946115 1.61 0.127 .8251795 4.095387
ridageyr | 1.085677 .0384635 2.32 0.034 1.007125 1.170356
_cons | .0620699 .031732 -5.44 0.000 .0209995 .1834645
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
use "NHANES0708_all.dta"
svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
gen agec=ridageyr-10.2
gen agec_sq=agec^2
gen agec_cb=agec^3
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any agec agec_sq
xi: svy,subpop(if subpop2==1 & male==1 & foodinsec==0): logit wccata i.food_any agec agec_sq,or
pweight: wtmec2yr
VCE: linearized
Single unit: missing
Strata 1: sdmvstra
SU 1: sdmvpsu
FPC 1: <zero>
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 3, 14) = 2.64
Prob > F = 0.0899
------------------------------------------------------------------------------
| Linearized
wccata | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | .5305682 .386784 1.37 0.189 -.2893772 1.350514
agec | .0882998 .0439607 2.01 0.062 -.0048927 .1814922
agec_sq | -.0172452 .0096772 -1.78 0.094 -.0377599 .0032696
_cons | -1.63694 .4544727 -3.60 0.002 -2.600379 -.6735008
------------------------------------------------------------------------------
i.food_any _Ifood_any_0-1 (naturally coded; _Ifood_any_0 omitted)
(running logit on estimation sample)
Survey: Logistic regression
Number of strata = 16 Number of obs = 10,149
Number of PSUs = 32 Population size = 297,136,095
Subpop. no. obs = 439
Subpop. size = 8,131,107.05
Design df = 16
F( 3, 14) = 2.64
Prob > F = 0.0899
------------------------------------------------------------------------------
| Linearized
wccata | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Ifood_any_1 | 1.699898 .6574933 1.37 0.189 .7487298 3.859407
agec | 1.092316 .0480189 2.01 0.062 .9951193 1.199005
agec_sq | .9829027 .0095118 -1.78 0.094 .9629441 1.003275
_cons | .1945745 .0884288 -3.60 0.002 .0742454 .5099203
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.